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Introduction 

 

 

―One may wonder whether Adam Smith, were he working today, would not be a 

neuroeconomi[st]‖ 

Aldo Rustichini (2005). 

 

Neuroeconomics is the study of the biological microfoundations of economic cognition and 

behavior.  Biological microfoundations are neurochemical mechanisms and pathways, like brain 

regions, neurons, genes, and neurotransmitters.1  Economic cognition includes memory, 

preferences, emotions, mental representations, expectations, anticipation, learning, information 

processing, inference, simulation, valuation, and the subjective experience of reward. In general, 

neuroeconomic research seeks to identify and test biologically microfounded models that link 

cognitive building blocks to economic behavior.  If successful, neuroeconomic research will 

improve economists‘ ability to forecast behavior (e.g., Bernheim et al 2011, Fehr and Rangel 

2011).   

Neuroeconomics is a big tent.  Neuroeconomic research requires some curiosity about 

neurobiology, but neuroeconomic research does not necessarily require a departure from classical 

economic assumptions (e.g., rationality and dynamic consistency).  A classical economist would 

be a neuroeconomist if she wanted to study the biological mechanisms that influence rational 

decision-making.  For example, neuroeconomic research provides insights about the sources of 

preference heterogeneity. To be a neuroeconomist you need to take an interest in the operation of 

the brain, but you don‘t need to prejudge its rationality.   

Neuroeconomics includes both theoretical modeling and empirical measurement.   At the 

moment, the majority of neuroeconomic research is focused on measurement.  However, this may 

change as a rapidly growing body of empirical knowledge provides discipline and catalyzes 

theoretical integration. 

Neuroeconomists use many different empirical methods, though neuroimaging is by far 

the dominant methodology now – especially functional magnetic resonance imaging (fMRI).2  

Neuroimaging technologies enable researchers to measure brain activity during problem solving, 

game-playing, choice, consumption, information revelation, and almost any conceivable type 

economic activity. Neuroeconomic research also uses a diverse body of complementary data 

sources, including neuropharmacological exposures, cognitive load manipulations, response time 

measurements, transcranial magnetic stimulation (a technology that temporarily alters normal 

cognitive functioning in a localized region of the brain), genotyping, analysis of patients with 

neural anomalies (e.g. brain lesions), and the study of animal models (e.g. rats or monkeys).   

There are four principal motivations for pursuing neuroeconomic research.   

First, some researchers are willing to study neuroscience for its own sake.  Few 

economists share this sentiment.  

Second, neuroeconomic research will likely provide a new way of (imperfectly) 

measuring human well-being.  For example, neural activity has been shown to correlate with 

reports of subjective well-being (EEG cite), receipts of reward (Schulz et al 1998, Knutson et al 

2006), and revealed preferences (Glimcher 2003; de Quervain et al 2005).  Camerer (2006) writes 

that: 

 

                                                 
1
 Neurotransmitters are molecules that carry neurochemical signals from one neuron to another. 

2
 Other neuroimaging methods include magnetic resonance imaging (MRI), positron emission tomography 

(PET), and electroencephalograms (EEG) 



―Colander (2005) reminds us how interested classical economists were in measuring 

concepts like utility directly, before Pareto and the neoclassicals gave up.  Edgeworth 

dreamed of a ―hedonimeter‖ that could measure utility directly; Ramsey fantasized 

about a ―psychogalvanometer‖; and Irving Fisher wrote extensively, and with a time 

lag due to frustration, about how utility could be measured directly. Edgeworth 

wrote: ―…imagine an ideally perfect instrument, a psychophysical machine, 

continually registering the height of pleasure experienced by an individual…From 

moment to moment the hedonimeter varies; the delicate index now flickering with 

the flutter of the passions, now steadied by intellectual activity, low sunk whole hours 

in the neighborhood of zero, or momentarily springing up towards infinity…‖  

Doesn‘t this sound like the language of a wannabe neuroeconomist? (except that it‘s 

more flowery). Now we do have tools much like those Edgeworth dreamed of. If 

Edgeworth were alive today, would he be making boxes, or recording the brain?‖ 

 

A precise hedonimeter is not available -- and probably never will be -- but neuroimaging 

techniques for imperfectly measuring hedonic states are available and are likely to dramatically 

improve with the resolution of imaging technologies.  However, it remains to be seen if such 

hedonic measurements will be accepted by economists.  It is plausible that economists will prefer 

to exclusively use revealed preferences, leaving little or no role for correlated neural activity as a 

complementary signal of well-being.  Nevertheless, it seems likely that neural activity and self-

reports will eventually be accepted as measurements that complement standard methodologies for 

inferring well-being.  After all, revealed preference can itself be interpreted as a noisy measure of 

well-being (Luce 1959, McFadden 1981), so neural measures are likely to be useful 

supplementary covariates.3 

Third, neuroeconomics will serve as a catalyst for model development.  Neuroscientific 

data and neuroscientific models have inspired economists to develop many new economic 

models: e.g., Bernheim and Rangel 2005, Fudenberg and Levine 2006, Benabou and Tirole 2006, 

Brocas and Carrillo 2007 UPDATE THIS LIST OF THEORIES.    

Fourth, neuroeconomics will provide a new, powerful way to test economic models 

which ambitiously specify both how choices depend on observables, and what computational 

mechanism leads to those choices. Of course, few economic models make specific neural (or even 

cognitive) predictions. However, when economic models do make neural predictions, these 

predictions provide an additional domain for testing these theories.  Theories that successfully 

explain both choice data and neural data have many advantages over theories that only make 

choice predictions. A theory that explains both types of data will inevitably predict some 

surprising new effects of treatment variables on choice (besides the usual suspects of prices, 

information and income). For example, Weber et al (2010) were motivated by neural fRMI 

evidence about the circuitry of time preference computations to predict that disruption of a 

specific brain region (right DLPFC) would cause people to act more impatiently. As 

hypothesized, disruption in that area did actually change choices between immediate and delayed 

actual monetary amounts. This type of predicted treatment effect could have not have come from 

a model without neural detail.   

In this list of four motivations, motivation one – neuroscience for its own sake -- is 

relevant primarily for neuroscientists.  Motivation two – an imperfect hedonimeter -- relies on 

future acceptance of neural measurements of well-being. Motivations three and four, using neural 

                                                 
3 Discrete choice models (e.g., Logit) have alternatively been interpreted as models with decision 

noise, like game-theoretic trembles, or models in which true utility has a stochastic component.  

In fact, these perspectives are both sensible and mutually compatible.  
 



evidence for model selection and testing, are much more likely to prove useful and gain 

acceptance.  

This analysis does not claim that economics can‘t get by without neuroscience.  

Economics certainly does not have to build neural foundations.  There is no economic model that 

could only be derived with the benefit of a neuroscientific antecedent.  There is no choice-based 

theory that can only be studied with neuroscientific data.  However, neuroscience is useful 

because it can accelerate the pace of economic research.  As a profession, economists are 

extremely adept at conjecturing detailed competing theories.  

For example, there are many different theories of negative reciprocity. Is the preference 

for punishing defectors reputation-driven?  Is punishment motivated by a reputation concern 

coupled with the implicit belief that we are always being watched, even in an ―anonymous‖ 

laboratory experiment? Is punishment a knee-jerk response with evolutionary origins? Or do we 

get real instantaneous pleasure from punishing defectors?   Distinguishing these theories with 

field data, or experimental choices, is challenging, though not impossible. Using a combination of 

choice data and neural data helps us make these conceptual distinctions, revealing that pleasure is 

at least part of the equation (Quervain et al XXX).   

Even with a blindfold, a pedestrian could walk across a college campus. But she would 

move travel more efficiently without it. Likewise, economists should remove our own 

methodological blindfold.  At the moment, the cost of wearing a neuroscientific blindfold is not 

great, since neuroscience is in its infancy.  However, as neuroscience continues to rapidly 

advance it will become overwhelming clear that neuroscientific insights improve our economic 

vision.4   

This chapter reviews the nascent, but rapidly growing literature in neuroeconomics, 

paying particular attention to experimental methods.  The paper is divided into six sections, which 

are modular, so they don‘t need to be read sequentially.  Each chapter was drafted by a different 

expert.  

Section 1 discusses basic neurobiology, which is needed to understand the scientific 

questions and methodology (including measurement) used in neuroeconomics.  Section 2 

discusses neuroscience methods, with emphasis on neuroimaging and the challenges of designing 

experiments for subjects inside scanners.  The rest of the chapter discusses four active topics of 

neuroeconomic research: Risk (Section 3); Intertemporal choice and self-regulation (Section 4); 

Social preferences (Section 5); Strategic behavior (Section 6). These do not span all parts of 

neuroeconomics, but they describe some areas of special interest in which progress is being made. 

 

                                                 
4 Becker and Murphy (1988) conjecture: ―People get addicted not only to alcohol, cocaine, and 

cigarettes but also to work, eating, music, television, their standard of living, other people, 

religion, and many other activities.‖ Within their model, ‗addiction‘ is simply adjacent 

complementarity in consumption (consuming more based on past consumption). However, to a 

neuroeconomist addiction to drugs is a biological process marked by increasing tolerance, 

withdrawal upon cessation, and sensitivity of use to environmental cue ‗triggers‘ associated with 

past use (Laibson, 2001). So the economic and neuroeconomic approaches can be distinguished 

empirically. Becker and Murphy‘s claim about the breadth of their theory could then be tested on 

a neuroeconomic basis (along with using choices, price, and future price expectations).  

 
 



1  Neurobiological Foundations  

 

Neuroeconomics reflects a reductionist approach to social science that rests on two premises. 

First, that explanatory systems for describing human choice behavior can be developed at 

neuroscientific, psychological and economic levels of analysis. Second, that there will be 

consistent and understandable mappings among these levels of explanation. If both of these 

assumptions are correct, then studies of choice and decision at any of these levels can be used to 

inform and constrain explanatory models generated at other levels.  

 

While the second of these premises remains controversial, it may be valuable to look to the 

history of the natural and physical sciences in assessing the likelihood that this will be validated 

by future empirical work. At the end of the 1800s a group of interdisciplinary scholars argued that 

quantum theory could provide a similar mapping between chemistry and physics which would 

allow for accelerated model development in both fields. The result was an enormously fertile 

period in the history of both of those disciplines and a permanent mapping between chemistry and 

physics. In the 1980s a similar trend could be observed in the relationship between biology and 

much of psychology. Only two decades later, just who is a neuroscientist and who is a 

psychologist can be very difficult to determine at a typical University. We believe that 

neuroeconomics may find itself today at the same crossroads. What this means for economics is 

that as these mappings are identified, a flood of algorithmic constraints from neuroscience will 

become available to economists. In a similar way, normative models and empirical behavioral 

models from economics will play a larger role in constraining neurobiological models. 

 

An important barrier to the importation of these constraints into economics, however, is a lack of 

knowledge about the brain and unfamiliarity with neuroscientific vocabulary. The pages that 

follow therefore provide a basic primer on the vertebrate brain. For the neophyte interested in 

learning more about the brain we recommend an introductory undergraduate text like 

Rosenzweig‘s ―Biological Psychology‖. For advanced material the reader is referred to standard 

graduate texts: ―Principles of Neural Science‖ or ―Fundamental Neuroscience‖. [finish cites] 

 

The Cellular Structure of the Brain 

 

Like all organs the vertebrate brain is composed of cells, self-sustaining units that are typically 

about a thousandth of an inch in diameter. The brain is composed of two types of cells, called glia 

and neurons. Glia are support cells that play structural and metabolic roles in the maintenance of 

the brain. It is neurons, or nerve cells, that perform computations and serve as the foundation for 

mental function. Figure 1 shows a cartoon of a fairly typical neuron. The large bulbous center of 

the cell, or cell body, contains all of the machinery necessary to keep the cell alive. Extending 

from the cell body are long thin processes called dendrites. These extensions serve as the inputs 

to a nerve cell, the structural mechanism by which signals from other nerve cells are 

mathematically integrated and analyzed during neural computation. Also extending from the cell 

body is a single long thin process called the axon. The axon serves as an output wire for the nerve 

cell. Axons may be quite long, in rare cases almost a meter, and nerve cells use these axons to 

broadcast the outputs of their dendritic computation to other nerve cells, even if those recipient 

cells are quite distant. They accomplish this connection to other nerve cells at the end of the axon, 

the tips of the axons making physical contact with the dendrites of other neurons. The cellular 

specialization at this contact is called the nerve terminal. The nerve ending-to-dendrite junction 

allows a receiving neuron to add, subtract, multiply, divide or even mathematically integrate the 

many continuous real-valued signals that its dendrites receive from the nerve terminals that 

impinge upon it. 



 

To better understand this process, however, we next have to understand what it means for a nerve 

cell to send a ‗signal‘ to another nerve cell. Formally, signals in nerve cells are called action 

potentials (or more colloquially spikes) and they reflect a rather simple electrochemical process 

that is now well understood. Like all cells, nerve cells are surrounded by membranes that restrict 

the flow of chemicals both into and out of the cell (Figure 2). These membranes particularly 

restrict the flow of the positively charged atom sodium (the active ingredient in table salt). The 

critical feature that this regulation of flow, and the separation of electrical charge that it imposes, 

creates is a stable equilibrium between two physico-chemical forces. The high concentration of 

sodium outside the cell sets up a diffusive force which acts to equalize the concentration of 

sodium inside and outside the cell by driving sodium inside the cell. In opposition, an electrical 

force (involving the positively charged ion potassium, which is overrepresented inside the cell at 

equilibrium) seeks to distribute electrical charge equally by driving sodium outside the cell. 

Because of the construction of the membrane, these two forces reach a stable equilibrium state at 

which the inside carries a negative charge with regard to the outside (a measure of the electrical 

force) which is opposed by an equal and opposite diffusive force. This equilibrium state is called 

the resting potential, and perturbations of this equilibrium induced by transient changes in the 

strength of the diffusive force serve as the conceptual centerpiece for all neural computation. 

 

These perturbations turn out to be quite easy to induce. This is accomplished by opening and 

closing mechanical channels that span the membrane. Consider an openable ion channel (Figure 

3), a hollow tube spanning the membrane with a hole that can be opened and which when opened 

permits a single sodium atom to cross the membrane. When a few hundred of these channels open 

on a dendrite the result is that the dendrite is driven to a new equilibrium state by the movement 

of sodium, by diffusion, into the cell. This new equilibrium, one associated with a stronger 

diffusive forced created by the open channels, is characterized by a commensurate change in the 

electrical force, in this case a shift to a higher voltage inside the cell. What opens these tiny ion 

channels? The answer is that chemicals, called neurotransmitters, transiently open channels of 

this type located on the dendrites. Sodium channels are not, however, the only type of channel 

located on the dendrites. Other classes of channels can cause the local voltage to transiently shift 

to a lower voltage equilibrium. By mixing and matching both channel types and neurotransmitters 

we can therefore construct a kind of instantaneous mechanical adding machine. One 

neurotransmitter opens voltage increasing channels. The more neurotransmitter, the more open 

channels, the higher the voltage in that dendrite. Another opens voltage decreasing channels. The 

physical membrane reacts by effectively averaging these electrical fields and the instantaneous 

electrical field across the entire dendrite is thus an equilibrium state in which the voltage is a 

(surprisingly linear) readout of the sum of the neuron‘s inputs.  

 

The next step in neural computation within a single neuron involves a nonlinear threshold. The 

ion channels along the axon, it turns out, are different from those in the dendrites. These ion 

channels open to allow sodium to enter the cell freely whenever the voltage near them exceeds a 

fixed threshold. Consider now what this means. Whenever the dendritic ‗computation‘ (the 

summed voltage in a region of the cell) exceeds a fixed threshold, these voltage-gated sodium 

channels all open, thus driving the entire cell to a new equilibrium that has a much higher 

voltage. What this means in practice is that once the voltage of the cell is high enough to trigger 

the opening of voltage-sensitive channels in the axon near to the dendrites, those channels open. 

This in turn drives the voltage even higher up. That in turn activates adjacent channels in the axon 

that although far away from the dendrite are subsequently opened by this more proximal shift in 

the equilibrium voltage. What happens, thus, is a wave of equilibrium shifts, realized as a change 

in the electrical state of the cell, which propagates down the axon to the axon terminal. This wave 

of activation is the action potential and importantly it is always of the same voltage – the one 



specified by the equilibrium state induced by these voltage sensitive channels. It is this 

mechanism that allows a cell to signal to the nerve endings, which may be a meter away, that the 

voltage of the cell body has crossed a specified threshold. 

 

It is critical to recognize, however, that we have transformed a continuous and largely linear 

variable, membrane voltage, into a discrete single event. How then can nerve cells communicate 

the kinds of continuous real numbers that we need for meaningful computation? The answer is 

that the action potential itself is automatically reset after about a thousandth of a second. A 

second action potential is then generated if the voltage in the dendrites remains above threshold. 

Because of the mechanics of the channels, the higher the voltage the sooner this second action 

potential occurs. The result is that the rate of action potential generation, the frequency with 

which action potentials are generated, is a roughly linear function of dendritic voltage. In practice 

this means that the number of action potentials generated per second by a cell is the continuous 

variable onto which any neural calculation must be mapped. This variable ranges from about 0 to 

100 action potentials per second (or Hertz, the units of frequency) for a typical neuron. Note that 

this is a positively valued range, which imposes some interesting computational constraints. 

Negative values can be encoded by assigning two neurons to the encoding, one for positive values 

and one for negative values. Alternatively, negative values can be encoded by defining 50 action 

potentials per second (or some other frequency) as ‗0‘. Both encoding techniques have been 

observed in the mammalian brain for different subsystems. The range is also, in practice, finite 

because of limited precision at several points in the system. This can be overcome by dedicating 

more than one neuron to the encoding of a single real number, a technique also widely observed 

in the vertebrate nervous system5. 

 

What happens to these action potentials next, after they reach the nerve terminal? The answer is 

that each action potential triggers the release of a tiny quantity of neurotransmitter from each 

terminal (Figure 4). This neurotransmitter then diffuses across a truly tiny space, called a 

synapse, that separates each nerve terminal from the dendrite with which it communicates. Lying 

at the far side of the synapse, on the surface of the dendrite, are the same ion channels that we 

encountered when discussing dendritic function above. These were the ion channels that were 

opened or closed by neurotransmitter molecules. These neurotransmitter molecules thus serve to 

open ion channels in those dendrites causing the membrane of the post-synaptic cell to change 

voltage. This completes the passage of the signal through a single neuron and initiates a new 

computation at the next neuron. Neuronal computation is thus incremental and serial, with chains 

or networks of neurons performing parallel mini-computations is continuous time. 

 

At a micro-scale, networks of neurons can be viewed as largely linear devices that can perform 

essentially any specifiable computation either singly or in groups. And a large segment of the 

theorists and empiricists in neuroscience devote their time to the study of neural computation at 

this level. Neuronal recording studies conducted by neuroeconomists in monkeys take advantage 

of this fact by measuring, one neuron at a time, the rate at which action potentials are generated as 

                                                 
5
 Let me draw attention to how obviously cardinal and linear is this discussion of firing rates as encoding 

schemes. To a neurobiologist, who is essentially an algorithmic engineer, this is the most natural way to 
imagine firing rates. Perhaps somewhat surprisingly, there is also a huge amount of data to support the 
conclusion that firing rates actually are linear with important environmental variables. Perhaps even more 
surprisingly, the activity level of a given neuron during rest actually does correspond, in most cases, to the 
default state of the variable being encoded. One simple example of this is the representation of the speed of 

a moving object in the visual system. Within a fixed range of speeds for each neuron, firing rates in cortical 
area MT are highly linear encoders of this highly abstract property with almost all variance accounted for 
by the Poisson structure of fixed neuronal noise. REF: Maunsell and VanEssen J Neurophys 1983.  



a function of either the options that a monkey faces or the choices that he makes. This allows 

them to test the hypothesis, for example, that to within a linear transform the neurons of a 

particular brain region encode in their spike rate the expected utility of an option. Of course this 

observation implies that the kind of stable mapping rules that link chemistry and physics seem to 

reach from economic theory all the way down to single neuron function, a point that this chapter 

seeks to make clear. 

 

A final point that needs to be made before we leave the study of neurons is that all of these 

processes - the generation of action potentials, the release of neurotransmitter, and the 

maintainence of dendritic electro-chemical equilibrium - are metabolically costly. All of these 

processes consume energy in the form of oxygen and sugars. In fact, this is one of the most costly 

metabolic processes in the human body. Over 20% of the oxygen and sugar we employ as 

humans is used in the brain, even though the brain represents only about 3% of the mass of the 

human body. So it is important to remember that more neural activity means more metabolic cost. 

This has two important implications. First, minimizing this activity is a central feature of the cost 

functions that lie behind neural computation. Second, this metabolic demand is what is measured 

in most human brain scanning experiments. To the degree that this metabolic cost is a linear 

function of neuronal activity, measurements of metabolic state reflect the underlying neural 

activity. 

 

From Neurons to Networks 

 

Studies of single neurons do show evidence of a clear mapping between economic theory and 

brain function, but it is also critical to understand the size of the human brain when one is 

considering the function of single neurons. The human brain is composed of about a hundred 

billion neurons. The average neuron receives, on its dendrites, inputs from hundreds of other 

neurons and in turn makes synaptic contacts at its nerve endings with hundreds of other neurons. 

If we were to imagine that 10^6 neurons encoded (for example) expected utility (to within a 

linear transform), and that those neurons were randomly distributed in the brain, then it would in 

practice be impossible to find those neurons if one was looking for them one at a time. The 

existence of a second hidden cost function, however, solves this problem for neuroscientists. It 

turns out that axons are particularly costly to maintain and the result is that evolution has shaped 

the human brain in a way that minimizes total axonal length. To achieve axonal minimization, 

two principles seem to be widely adhered to in the neural architecture. Neurons engaged in 

related computations tend to be grouped closely together and communication between distant 

groups of neurons tends to employ highly efficient coding schemes that use a minimum number 

of axons.  

 

These ex ante constraints, and a wealth of empirical evidence, now support the conclusion that 

the brain is a set of modular processing stages. Discrete regions of the brain typically perform 

specific computations and pass their computational outputs in a highly compact form to other 

brain areas for additional processing. We need to maintain, however, a clear mapping between an 

analysis at the level of neurons and an analysis at the level of brain areas. Single neuron studies of 

decision making in monkeys are an example of this kind of mapping. Those studies often measure 

the rate of action potential generation in neurons that serve as outputs from brain areas and as 

such provide information at both of these levels of analysis. 

 

Both the human and monkey brain can be divided into three main divisions based on converging 

evidence from developmental, genetic, physiological and anatomical sources. These three 

divisions are, front to back, the telencephalon, or forebrain, the diencephalon and the brainstem 



(Figure 5). For the purposes of neuroeconomic study the telencephalon, which all vertebrates 

possess in some form, will be our focus. 

 

The telencephalon itself can be divided into two main divisions that will be familiar to many 

neuroeconomists, the cerebral cortex and the basal ganglia. Of those two, the more 

evolutionarily ancient structure is the basal ganglia. 

 

The basal ganglia are composed of a number of sub-regions in humans that lie beneath the 

cerebral cortex. There are five of these regions that are most important. The caudate and putamen 

together are known as the striatum. The striatum, and in particular the lower, or ventral, striatum 

is of particular interest because activity here appears to encode option value during choice tasks 

(Levy et al. 2010). These areas receive extensive inputs from the frontal cortex and send almost 

all of their outputs to two other nuclei of the basal ganglia, the globus pallidus and the substantia 

nigra pars reticulata. Speaking generally, the caudate and putamen are the main input areas of 

the basal ganglia and the globus pallidus and substantia nigra pars reticulata are the main output 

areas. These output areas project, through a dedicated relay, back to the frontal cortex. The core 

circuit of the basal ganglia is thus a loop that takes information from the frontal cortex and passes 

it back to the frontal cortex after further processing. The one remaining critical region of the basal 

ganglia is composed of the dopaminergic neurons of the ventral tegmental area and the 

substantia nigra pars compacta. These dopaminergic neurons receive projections from the output 

nuclei of the basal ganglia as well as from many other areas and project both to the frontal cortex 

and the input nuclei of the basal ganglia. The dopamine neurons have been of particular interest 

because there is now overwhelming evidence that these neurons encode a reward prediction error 

signal appropriate for error-correction based learning (e.g., Calin et al., QJE 2010). 

 

The cerebral cortex of the telencephalon is much larger than the basal ganglia in most primate 

species and is surprisingly homogenous in structure. Essentially all cortex is a 6-layered sheet 

(Figure 6) with each of the layers showing very specific functional specializations. Layer 5, for 

example, always contains a specific class of cells that send axons out of the sheet to make 

connections with other distant regions in the cortex. This 6-layered structure also means that the 

cortex is, at least structurally, a sheet like device. This is obvious on gross inspection. The 

crinkled surface of the brain reveals that the cerebral cortex is a folded sheet that has been 

crumpled up to fit inside the skull. Beneath this folded sheet are dense runs of axons for 

interconnections between different places in the cortex. The sheet itself, composed largely of cell 

bodies, is referred to as grey matter. The dense runs of axons beneath it are referred to as white 

matter. For hundreds of years this sheet has been divided into 4-5 main subdivisions. These are 

not functional subdivisions but rather names of convenience. These main divisions are the frontal, 

parietal, occipital, and temporal lobes. Until recently the insula was considered an independent 

fifth lobe although it is now often referred to as part of the frontal lobe. 

 

Despite this casual parcellation into lobes, until the twentieth century it was widely believed that 

cortex was homogenous not only with regard to its anatomy but also with regard to its function. 

That conclusion was successfully challenged when it was demonstrated that sub-areas in the 

cortex served quite specific functional roles. Ultimately, this led the famous German Neurologist 

Corbinian Brodmann to conclude that there are tiny differences between the anatomical structure 

of different regions of the cortex, differences so small that they had been overlooked in the 

preceding two centuries. Based on these tiny differences Brodmann divided the cortex into a large 

number of numerically labeled sub-areas and cortical sub-areas. 

 

The principal Brodmann-area subdivisions, at a functional level, parcellate the cortex into a series 

of areas with known interconnectivities and discrete functions. Both of these properties are 



important. The connectivities are surprisingly sparse in the sense that each cortical area connects 

with only a few other areas, and these connections are identical across normal individuals. The 

functions are often surprisingly discrete and now very well defined for some areas. 

 

One final area that deserves mention anatomically is the amygdala. The amygdala is a portion of 

the telencephalon that is not classically considered part of the cerebral cortex or the basal ganglia. 

The amygdala is of particular interest because a wealth of studies now suggest that the 

psychological state of fear can be mapped to activation of the amygdala. Generalizing from these 

observations has led to the suggestion that psychologically defined emotional states may well 

map to neurally localizable activity. The good news is that this seems to be the case for fear. The 

bad news is that there is no compelling evidence, as yet, for such specific localization of other 

psychologically defined emotions. 

 

Summary of Neurobiology 

 

For an economist interested in neuroscience there are two central messages about the foundations 

of neuroscience. The first is that there seem to be clear and consistent mappings between events 

at the neural level and events at the behavioral level. The second, which follows from the first, is 

that the details of neurobiological function provide valuable constraints for economic theories. 

What this points out in turn is the critical need for basic neurobiological literacy amongst 

neuroeconomists. 

 

 

 

 

 



 

 

 

 

 

 

 

 

Figure 1: A Neuron 

 

 
 

Figure 2: A Membrane 

 

 
 

Figure 3: An Ion Channel 



 
 

 

Figure 4: A synapse 

 

 
 

Figure 5: Brains 



 

 

 
 

 



 
 



 



 

2:  Functional MRI (fMRI): A Window into the Working Brain  

An understanding of the human brain remains one of the greatest challenges of science.  One of 

the primary impediments to meeting this challenge has been the ability to measure brain activity 

associated with mental function. Methods for non-invasively measuring brain electrical activity in 

humans, or electroencelphalography (EEG), have been available for over 80 years (Berger, 1929).  

While these have produced useful information about the timing of some neural processes, the 

inhomogeneity of electrical conductivity across the brain, limits their spatial resolution.  

Alternative methods that provide better spatial resolution are available, such as 

magnetoencephalography, or MEG  (Hämäläinen et al., 1993).  However, like EEG, these are 

restricted to measuring cortical activity (where there are sufficient numbers of geometrically 

aligned cells to produce a coherent signal), and thus miss the operation of deeper structures 

thought to be involved in reward processing (e.g., basal ganglia and brainstem neuromodulatory 

nuclei). 

To date, the most successful efforts to measure brain activity take a less direct approach than 

recording neural activity from the scalp.  These neuroimaging methods exploit an observation 

first made by Roy and Sherrington in 1890 (Roy & Sherrington, 1890): that neural activity is 

associated with increased blood flow to the active brain region.  Although the precise 

mechanisms that mediate the relationship between neural activity and blood flow remain 

incompletely understood, this relationship has been used successfully to measure regional brain 

activity.  The first of these methods to be developed involved the injection of radiotracers into the 

blood stream, and the measurement of their distribution within the brain while the subject is 

engaged in mental activity (Phelps et al., 1975).  A major advantage in these methods, including 

positron emission tomography (PET) and single positron emission computed tomography 

(SPECT), is that they can be used to radioactively label agents that selectively bind specific 

neurotransmitter receptors.  This has been especially useful in evaluating the function of 

neurotransmitter systems in psychiatric disorders. However, safety limitations on exposure to 

radioactivity restrict the spatial resolution of the brain activation (about 5mm) and the temporal 

precision of the measurement (one longitudinal observation can be taken per minute).  Another 

approach to measuring activity-related changes in blood flow uses optical recordings, which 

exploit signatures in the spectrum of light scattered by blood-born hemoglobin.  Non-invasive 

optical recordings use near-infrared spectroscopy (NIRS;  Villringer et al., 1993) since light in 

this part of the spectrum penetrates the scalp.  Although the high temporal resolution, relatively 

low cost, and portability of this method make it useful for some specialized applications (e.g., 

studying infant brains), it is still limited by low sensitivity and spatial resolution.  By far, the most 

common approach currently used to measure human brain activity is functional MRI (fMRI). 

Functional MRI and the BOLD signal 

The ability of MRI to detect changes in blood flow (which is referred to as the BOLD signal, for 

Blood-oxygen-level dependence) was first reported by three separate laboratories less than twenty 

years ago, in 1992 (Bandettini et al., 1992; Kwong et al., 1992;  Ogawa et al., 1992). This method 

relies on two fortuitous phenomena of physics and physiology:  1) oxygenated and deoxygenated 

hemoglobin molecules have distinguishable effects on the signals detected using magnetic 

resonance imaging (MRI);  and 2) increases in blood flow to areas of increased neural activity 

appear to exceed the demands of aerobic metabolism, paradoxically increasing the density of 

oxygenated hemoglobin.  Exploiting these effects, MRI can be used to detect a blood oxygen 



level dependent (BOLD) signal that is sensitive to relative changes in local blood flow.  This, in 

turn, can be used to index neural activity.  MRI can also be used to measure neural activity in 

other ways (e.g., using arterial spin labeling, or ASL, to directly measure perfusion; Williams et 

al., 1992)  and to map anatomy (e.g., diffusor tension imaging, or DTI, to image fiber pathways;  

Le Bihan, 1995; Buxton, 2001).  However, fMRI using the BOLD signal is by far the most 

common technique used to learn about brain function.  

Because the BOLD signal reflects changes in blood flow rather than neural activity directly, it is 

limited in several ways.  Most importantly, it responds slowly to neural activity, first appearing 

about 2 secs after a triggering event, peaking at about 4-6 seconds, and abating after about 10 

seconds.  While highly sensitive to even very brief neural events (lasting as little as 500 msec), 

the BOLD signal reflects these events in a delayed and diffused manner.  Analyses try to 

compensate for this nonlinear effect (by incorporating models of the typical hemodynamic 

response function, or HRF).  However, these rely on assumptions that are not always accurate or 

generalizable, and compromise precision.  Because it reflects hemodynamic changes rather than 

direct neural activity, the BOLD signal is also limited in spatial resolution (with a current lower 

limit of about 1 mm). 

These limitations notwithstanding, the method has proven remarkably successful in identifying 

neural activity associated with a wide array of mental processes.  These range from visual 

perception and the control of overt motor actions, to subtler intervening ones such as recollection, 

decision making, inference and emotional evaluation.  The ability of fMRI to localize such 

activity has been validated by comparing results with those from complementary methods, 

including other imaging methods, as well as simultaneous recordings of the BOLD signal and 

direct electrical recordings in non-human primates (Disbrow et al., 2000; Logothetis et al., 2001) 

and in human patients with implanted electrodes (Mukamel et al, 2005).  Because it is non-

invasive, and owing to the wide availability of MRI scanners, fMRI has become a mainstay of 

research on human brain function. 

Design considerations 

Scanning parameters.  Several factors govern the effectiveness of an fMRI study, ranging from 

pulse sequence design (how the MR scanner is ―tuned‖) and the alignment of scans within the 

brain, to the design of the behavioral paradigm used to engage mental functions of interest.  

Choice of pulse sequence has a strong impact on the nature and quality of the data acquired, but is 

beyond the scope of this article (the interested reader is directed to Haacke, Brown, Thompson & 

Venkatsean, 1999).  However, it is worth noting that a typical study involves longitudinal 

samples from about 10,000 brain loci (about 3cc each) taken every two seconds for about 45 

minutes.  It is also worth noting that both pulse sequence design and scan placement can affect 

signal drop out (known as ―susceptibility artifact‖).  This occurs in brain areas that are near air 

passages (such as the sinuses), including ones of particular relevance to decision making and 

valuation such as the orbitofrontal cortex (lower surfaces of the frontal lobes) and amygdala 

(along the inner surface of the temporal lobes).  Scans can be tuned to compensate for these 

effects, but this can sacrifice coverage or sensitivity in other brain areas (akin to the problem of 

backlighting in photography).  Newer hardware designs which  address this problem are 

beginning to emerge (akin to high dynamic range [HDR] imaging in photography), and should be 

commonplace in the near future. 

Experimental design and the subtractive method.  Equal in importance to scanning considerations 

is the behavioral design of the experiment.  The most common approach to identifying brain areas 

associated with a particular cognitive function uses subtractive logic (Donders, 1868/1969):  



Contrast an ―experimental condition‖ in which the participant is performing a task of interest (for 

example, a decision between two options) with a ―control‖ condition in which the participant is 

required to process all of the same stimuli and responses, but does not engage in the process of 

interest (for example, observe the choice options, but simply press a button after they are seen, 

without choosing between them).  The data are then analyzed by subtracting signals observed in 

the control condition from those in the experimental condition.  This is usually done using simple 

t-tests or, for factorial designs, multiple regression or analysis of variance (ANOVA).  The 

potential flaws of this design are obvious (e.g., the subtraction is most informative if the sensory 

and motor processes are carried out in precisely the same manner in the control and experimental 

conditions).  However, as a matter of practice, this approach has been surprisingly successful (as 

evidenced by converging evidence using a variety of other methods).   

Parametric designs.  A variant on the subtractive method, that is more sensitive, is the use of a 

parametric design that relies on additive factors logic (Sternberg, 1969).  In this case, a series of 

conditions are designed to engage the process of interest in a graded fashion (for example, an 

increasingly difficult decision).  The data are then analyzed to identify areas showing a graded 

increase in the BOLD signal that corresponds to the experimental manipulation (e.g., Braver et 

al., 1997).  This is usually done using regression, to identify areas in which the BOLD signal is 

predicted by regressors that describe the experimental manipulation(s).  Like subtraction, these 

parametric designs are also sensitive to critical assumptions (e.g., about the functional form of 

neural responses and the BOLD signal‘s response to the experimental manipulation).  Once again, 

despite potential pitfalls, this approach has proven to work surprisingly well (in the sense of 

producing results that are later corroborated by other methods).  

Neural adaptation.  A variant on the parametric approach takes advantage of the well-

documented phenomenon of repetition suppression, a form of adaptation or habituation at the 

neural level (Grill-Spector & Malach, 2001; Krekelberg et al., 2006). The neural response to a 

preferred stimulus decreases when the stimulus is repeated sufficiently rapidly (over seconds or 

even minutes).  This provides a method for distinguishing neural responses to different types of 

stimuli that do not lend themselves naturally to manipulations of strength in a standard parametric 

design (e.g., different categories of visual objects). 

Trial sequencing.  Two additional and critical design considerations are the pace of the 

experimental task, and how experimental conditions are organized across trials.  Considering only 

the BOLD signal, it is ideal to separate every trial event (e.g., stimulus presentation, decision, and 

motor response) by at least 6 and preferably as much as 12 seconds.  This allows direct 

discrimination of the BOLD response to each event.  However, this not only compromises the 

rate of data collection, but also can interact with cognitive variables (such as participants‘ 

strategies and/or motivation in performing the task).  Methods have been developed to analyze 

more rapid event-related designs (Buracas & Boynton, 2002; Burock et al., 1998; Friston et al., 

1999; Liu, 2004), with events occurring as quickly as every 3-4 seconds.  However, such analyses 

must make assumptions about the form of the hemodynamic response function (HRF) in order to 

―deconvolve‖ the BOLD signal response to a given event from overlapping effects of previous 

ones.  Empirical studies suggest that the form of the HRF appears to be moderately consistent 

both across brain areas and individuals — at least within regions in which it can be directly 

estimated (e.g., primary sensory and motor cortex) — and so most approaches use a pre-specified, 

canonical approximation of the HRF.  However, the extent of variation in the HRF is not yet fully 

understood, especially for regions in which it is difficult to measure (e.g., those supporting more 

abstract cognitive functions such as decision making), and thus caution is warranted.  This is 

compounded by the fact that the HRF is best characterized in response to brief, punctuated neural 

events.  However, many cognitive processes can be protracted (e.g., complex forms of decision 



making), and therefore are more difficult to model using standard rapid event-related techniques.  

Although some progress has been made in this area (e.g., Donaldson et al., 2001; Greene et al, 

2001; Visscher et al., 2003), it remains a challenge for BOLD-based imaging methods. 

Blocked designs.  The discussion above assumes that each trial is analyzed separately, responding 

to controlled or behaviorally-generated events (called  ―event-related‖ designs).  However, 

sometimes it is advantageous to block trials by experimental condition, so the appropriate 

analysis looks for sustained activity throughout an entire block of similar events.  These block 

designs can provide greater power to detect an effect, if the mental processes involved transpire 

over a longer time frame (e.g., active maintenance of a mental set; Braver et al., 2003).  However, 

blocked designs are compromised by the fact that the predominant source of noise in the BOLD 

signal is low frequency (minutes), and therefore may be inextricably confounded with block 

effects. 

Naturalistic designs.  Finally, it is worth mentioning that a relatively new direction is to use more 

naturalistic experimental designs, in which participants engage either in self-directed tasks (e.g., 

reflect on the day‘s events) or common activities (such as movie watching).  The approach to 

interpreting such data relies heavily on correlational analysis, either between brain regions within 

an individual (to identify regions of brain activity that co-vary, presumably reflecting task-

relevant circuits), or across individuals (to identify regions that vary similarly in response to 

similar stimulus conditions).  The most noteworthy example of this is work demonstrating that, 

over large areas of the brain, there are remarkably high correlations in brain activity across 

individuals watching the same movie (Hasson et al, 2004).  These approaches may be moving 

closer to observations of brain function at a level comparable to the complex dynamics involved 

in naturally-occurring decision making processes.  

Image Analysis 

fMRI data often require extensive pre-processing in order to minimize the impact of nuisance 

variables (such as machine noise, head movement, etc.).  Most of these methods are now 

standard.  However, there are several important considerations that warrant discussion here, 

including alignment of imaging data across individuals for group averaging, corrections for 

multiple comparisons, exploratory analyses versus hypothesis testing, and univariate vs. 

multivariate methods. 

Group averaging.  Averaging imaging data across individuals can considerably improve power to 

detect subtle effects. To perform group averaging, the brains of each individual must be 

appropriately jointly aligned.  This is complicated by the fact that human brain anatomy varies 

considerably across individuals.  There are several methods for group alignment, that vary in 

sophistication by how they morph brain maps onto one another (Fischl et al, 1999; Klein et al., 

2009; Talairarch & Tournoux, 1988; Woods et al., 1998; van Essen et al., 2001).  However, all 

these methods face a common limitation:  they attempt to align brains according to anatomic 

features, such as the shapes of the cortical folds (gyri and sulci).  Unfortunately, the relationship 

between function and anatomic structure is not identical across individuals.  For example, while 

the vertical meridian separating the left and right visual fields typically lies within the same fold 

of primary visual cortex (the calcarine fissure), its precise location (i.e, whether it lies along one 

bank of the fold or the other) is known to vary considerably across individuals.  Thus, aligning 

anatomic landmarks may not succeed in precisely aligning parts of the brain that perform the 

same function.  This can introduce noise into group-averaging, and limit spatial resolution.  

Methods are currently under development that align images based on functional (rather than 

anatomic) landmarks (e.g., Sabuncu et al., 2010).  Success in this effort should considerably 



improve the sensitivity and spatial resolution of fMRI, while also providing new information 

about features of functional organization that are universal across brains. 

Exploratory analysis and multiple comparisons.  Whether analyzing images from a single brain 

or multiple brains, most methods apply variants of the general linear model (t-tests, ANOVA, or 

linear regression).  These tests are typically applied independently to each voxel (volumetric 

pixel) within the image. This step is  an exploratory analysis designed to determine which voxels 

(or clusters of adjacent voxels of a specified size) show a significant effect of the experimental 

manipulation.  Voxels that meet a specified level of statistical significance are then shown 

(usually by colors indicating their level of significance) in an activation map.   One problem with 

this approach is that image sets are usually made up of a large number of voxels (at least 10,000 

and sometimes over 100,000).  Thus, the threshold used for statistical significance must be 

corrected to take account of this massive number of comparisons, and avoid a preponderance of 

Type 1 errors (―false positives‖).  The simplest ways of doing this is to divide the threshold by the 

number of comparisons (Bonferroni correction).  However, this risks being overly conservative 

(resulting in type II error, in which a genuine effect does not ‗survive‘ this correction and appears 

to be insignificant).  This has driven the development of more sophisticated methods, such as 

cluster size thresholding which takes advantage of the fact that voxels showing truly significant 

effects are likely to be contiguous with one another (Forman et al., 1995; Poline et al., 1997).  

However, these methods can be complex, and subject to misuse (Smith & Nichols, 2009; Vul et 

al., 2009).  Therefore, it is important to attend carefully to the assumptions they make (e.g., about 

the independence of voxels). 

Hypothesis testing and regions of interest.  An alternative to the use of whole brain, exploratory 

analyses is to specify, a priori, regions of interest (ROIs) in which effects are expected to occur, 

and then restrict hypothesis testing to those areas.  This limits the number of comparisons, and 

thus lowers the expected false discovery rate.  However, when a significant effect is observed in 

an analysis restricted to a given ROI, it is not possible to assert that the effect is specific to that 

brain region since others have not been tested.  In practice, the best studies use a combination of 

the methods described above, initially using exploratory methods to identify regions of activity, 

and then confirming positive findings in subsequent experiments using an ROI-based, hypothesis-

testing approach. The most solid findings come from a sequence of experiments and methods 

(ideally coming from different research groups) proceeding in this way. 

Correlational analyses. The methods described above are being combined increasingly with 

correlational analyses, that examine the relationship of activity within specified voxels both to 

other voxels within the brain (to identify task-relevant circuits, and sometimes referred to as 

―functional connectivity analyses‖), as well as to other physiological variables of interest (such as 

galvanic skin response, pupil diameter, eye movements, etc.), behavior (such as reaction time, 

accuracy, decision outcomes, etc.), and psychometric and demographic factors (such as 

personality, age, gender, etc.).  Such analyses have the potential to provide valuable information 

about the relevance of observed neural activity to mental function and behavior.  However, such 

analyses also carry risks that have recently been the subject of some attention (Kriegeskorte et al., 

2009; Vul et al., 2009).  In particular, such analyses must attend to the same problem of multiple 

comparisons (in this case, the number of correlations) as other analysis methods. 

Multivariate pattern analysis.  Finally, perhaps the most important development in the analysis of 

neuroimaging data has been the move from univariate methods to multivariate pattern analysis 

(MVPA).  Univariate methods, such as those described above, analyze images voxel by voxel 

seeking to identify peaks of activity (i.e., voxels or voxel clusters that exceed a statistical 

threshold).  However, this almost certainly does not correspond to how the brain functions.  



Rather, computational activity is distributed over many regions, some of which may be more 

subtly engaged — but no less important — than others.  This has recently been addressed by the 

application of machine learning classifier algorithms.  These are ―trained‖ on one set of imaging 

data to identify distributed patterns of activity that reliably predict specific mental states or 

behaviors (e.g., the perception of  a particular type of object, or a particular outcome of a 

decision).  The patterns of activity identified in the training data are then tested on a separate set 

of data, to determine the generality of their ability to predict mental states or function.  Such 

methods have proven to be successful in a variety of domains, including the ability to identify the 

orientation of a line (Kamitani & Tong, 2005) or class of object being visually observed (Haxby 

et al., 2001), the class of an object being recollected (Polyn et al., 2005), the syntactic class of a 

linguistic stimulus (Mitchell et al., 2008), and the value of public goods in a designed mechanism 

of exchange (Krajbich et al., 2009).  These methods represent the leading edge of neuroimaging 

research, promising to greatly enhance the sensitivity with which fMRI (and other methods) can 

be used to track neural activity underlying ongoing mental processes in human participants. 

 
3. Risky choice  

 

This section describes neural activity during risky choice. There are three topics: statistical 

moments and evaluation of risky choice; prospect theory; and causal experiments and their 

implications for economics. 

 

Statistical moments 

 

One popular model of risky choice is that statistical moments of reward distributions are weighted 

and integrated to form a choice value. This approach is popular in finance, where risk and return 

of asset values are integrated to determine value, and in behavioral ecology studies, where 

animals are assumed to respond to mean and variance in foraging for food. A moments-based 

approach also follows from a Taylor expansion of expected utility, so it should approximate 

choice for local small-scale decisions.  

 

Several studies indicate that the mean and variance of rewards of different types are encoded in 

brain activity (e.g., Figure 1, from (Platt and Huettel, 2008)). Average mean reward seems to 

activate striatal regions (Preuschoff et al., 2006). The striatum is activated by many different 

types of rewards including money, attractive faces, anticipation of curiosity-provoking trivia, and 

prediction error. 

 

The variance of rewards, often thought of as risk, seems to activate the insula, a region involved 

in interoceptive integration of emotional and cognitive information (Craig, 2002;Mohr et al., 

2010). One study suggested, from the time course of BOLD signals, that expected reward 

evaluation occurs rapidly, in striatum, and variance response occurs more slowly (a couple of 

seconds later) in insula cortex (Preuschoff et al., 2006). 

 

  

Prospect theory 

 

Prospect theory is a psychophysically based theory of how risks are evaluated and combined, 

which makes small modifications from expect utility theory. The central modification is that 

outcomes are encoded relative to a reference point. In addition, the decision disutility from 

anticipated losses is assumed to weigh disproportionately more strongly than gains, captured by a 



loss aversion parameter lambda. Objective probabilities are assumed to be weighted nonlinearly, 

so that low probabilities are overweighted and higher probabilities are underweighted. 

 

Establishing the neural circuitry underlying prospect-theoretic valuation, and comparing it with 

candidate circuitry for expected utility, could prove to be a fruitful way to compare theories and 

develop new predictions (based on the location of apparent circuitry (see (Fox and Poldrack, 

2008)).  

 

 

An implication of reference dependence is that descriptions of choices which are equivalent in 

their consequences but differ in the implicit reference point, could lead to different choices. For 

example, in one study with medical students and doctors in leading hospitals, the subjects 

preferred radiation as a treatment for cancer because the immediate mortality rate from surgery 

was 10%, (and zero for radiation) and the five-year mortality rate for surgery was 66%, rather 

than 78% for radiation treatment. However when exactly the same statistics were described as 

survival rates, that is, the percentage of people surviving rather than dying, surgery looked much 

more attractive because the short-run survival rates were 90% and 100%, and the long-run 

survival rates 34% rather than 22%. 

 

One imaging study looked at brain activity during response to loss and gain framed choices for 

monetary gambles (De Martino et al., 2006). They looked for an interaction effect between 

choosing sure things rather than gambling, which operates differently for gains and losses (a 

neural source of reflection effects). They found activity in the amygdala in response to the typical 

default choice, which is a sure thing for gains and a gamble for losses. Dorsal medial cingulate 

cortex was also differentially activated in the unusual choices (gambling over sure gains and 

accepting a sure loss). A further study showed that subjects with SS alleles of 5HTT 

neurotransmitters showed larger framing effects (Roiser et al., 2011). Furthermore, the pattern of 

activity in amygdala in response to framing is evident in the SS allele subjects but is completely 

absent in subjects with different genetic makeup. A further study (De Martino et al., 2008) 

showed that autistic adults are less susceptible to this framing effect. This is ironic, because 

framing effects are often thought of as violations of rational choice principles; if the autistic 

subjects obey those principles more than normal subjects, then perhaps they should not be 

considered benchmarks of rationality. 

 

A key component of prospect theory is loss aversion, the disproportionate disutility from losing 

relative to equal sized gains. Until recently, most evidence of loss aversion in decisions is inferred 

from human choices between monetary gambles with possible gains and losses. However, there is 

also evidence of loss-aversion in monkeys trading tokens for stochastic food rewards (Chen et al., 

2006) and associated evidence of endowment effects in monkeys (Lakshminarayanan et al., 

2008).  

 

An early fMRI study (Tom et al., 2007) showed comparable neural activity in several value 

related brain regions during evaluation of gambles with increased gains and decreased losses. In 

this study the neural loss aversion, the difference in brain response to potential loss dollar for 

dollar, relative to potential gain, was strongly correlated (r=.85) with the degree of loss aversion 

inferred behaviorally from choices among gambles. While that study indicated a common basis 

for reduced loss and increased gain, other studies indicate different locations of brain activity for 

loss and gain. For example, Yacubian et al. (Yacubian et al., 2006), in a study with usually large 

sample sizes, found gain activity in VStr, and loss activity in amygdala and temporal lobe regions 

lateral to the stratum. A later study showed that two patients with selective bilateral amygdala 

lesions exhibited very little loss aversion (De Martino et al., 2010). 



 

Prospect theory also posits that attitudes toward risk depend not only on valuation of outcome 

utility, but also on weighting of likely outcomes in the process of decision.  A simple way to 

account for these effects is by weighting an objective likelihood of an outcome, p(X), by a 

transformed function (p(X)). Several parametric weighting functions have been suggested and 

estimated (e.g., (Abdellaoui et al., 2010)) but we focus on the simple one-parameter function 

(p)=1/exp([ln(1/p)] (Prelec, 1998). This function is equivalent to linear weighting of objective 

probability when =1, has increasingly nonlinear inflection for <1, and always rotate around a 

pivotal probability p*=1/e=.37 (at which point (p*)=p*). Some field studies of game shows and 

a huge sample of horse racing bets (Snowberg and Wolfers, 2010) indicate overweighting of low 

probabilities too.  

 

The neural literature indicates some biological correlates of nonlinear weighting, but in 

much more different regions and methods than studies discussed previously in this section. An 

early study using a titration procedure to match gamble value (Paulus and Frank, 2006) linked 

inflection of (p) to activity in anterior cingulate (ACC). A simpler later study by Hsu et al. (Hsu 

et al., 2009) discovered neural activity in VStr in response to valuation of different outcome 

probabilities in which the neural response function matched reasonably closely the inflection 

derived simply from analysis of choices (Figure 2). Hsu et al. also found a modest neurometric 

link between variation across subjects in behavioral nonlinearity of weights and neural activity 

associated with nonlinearity. However, Tobler et al. (Tobler, 2008) found signals associated with 

nonlinearity only in left DLPFC.  

 

Takahashi et al. (Takahashi et al., 2010) correlated D1 dopamine receptor density with 

more linear probability weighting (which is also associated, in the estimated Prelec (1998) 

function, with higher weights on all probabilities and hence more attractive valuation of 

gambles). Finally, Wu et al. (Wu et al., 2009) used a motor task in which ―risky choice‖ is 

equivalent to reaching very rapidly (<700 msec) to a narrow physical target in order to get a large 

reward (a slow reach earns nothing). They estimate that low probabilities are actually 

underweighted in the implicit motor valuation of reward.  

 

Causal manipulations 

 

Conventional economic analyses typically draw predictive power by assuming stability of 

preferences, using previous choice data to infer preferences (e.g., by estimating demand 

elasticities), then—holding preferences fixed-- predicting a comparative static change in choices 

based on changes in information, prices, or income.  However, as the neural circuitry underlying 

choice becomes better understood, it will be possible to causally influence neural computations 

reliably in various ways, and thereby change choices.6 Indeed, several studies have already shown 

such causal influences in choice among risky financial gambles.   

Risk-aversion seems to be causally increased by: Experiencing stress (induced by 

immersion of hands in cold water) (Porcelli and Delgado, 2009); stimulation (―up-regulation‖) of 

rDLPFC using tDCS [transcranial direct stimulation] (Fecteau et al., 2007); seeing negative-affect 

images before choice (Kuhnen and Knutson, forthcoming); and eating food (Symmonds et al., 

2010).  Risk-seeking seems to be causally increased by: Disrupting right DLPFC (Knoch et al., 

2006); stimulation using tDCS in older adults (Boggio et al., 2010); lowering serotonin in 

macaques by depleting tryptophan (Long et al., 2009). Loss-aversion can be down-regulated by a 

                                                 
6
 These types of causal influences have been for a long time using pharmacology, and techniques like TMS 

to affect vision and motor movements.  



perspective-taking instruction to ―think like a trader‖ and combine losses and gains mentally 

(Sokol-Hessner et al., 2009). fMRI indicates this down regulation works, to some extent, by 

reducing amygdala activation in response to loss (Sokol-Hessner et al., 2010). 

There are two lessons from these biologically causal experiments: First, exogeneous 

changes to the neural circuitry which makes computations leading to risk-avoiding behavior can 

directly change choices. These effects are not due to changes in prices, information, or constraints 

(in any typical sense). These effects therefore suggest a possible expansion of the rational choice 

view in economics to include computational circuitry. Eventually we will understand the 

conditions under which that computational circuitry produces choices which approximate 

constrained-optimal rational choice as in consumer theory.  

But more generally, the ability to cause change is useful as a tool to test the depth of 

understanding of how the circuitry works in general. And ideally, some of these results will invite 

new economic hypotheses about how exogeneous changes in the economic environment will 

influence neural computation, and hence predict changes. For example, if causally disrupting a 

brain region involved in inhibition and self-control reduces self-control, and external events also 

place a burden on activity in that region (mimicking disruption), then one can predict that the 

disruptive events will affect economic choice. What these new hypotheses are, and how well their 

effects can be seen in highly-aggregated data, remains to be seen.  

 

Logical rationality and biological adaptation 

 

Finally, we note an ironic result emerging from neuroeconomics about the conflict 

between notions of rationality. Patients with brain damage do not exhibit the Ellsberg paradox 

(Hsu et al., 2005) or loss-aversion (De Martino et al., 2010). Autistic patients exhibit reduced 

gain-loss framing effects (De Martino et al., 2008).  If the sure-thing principle, description-

invariance (no framing) and dynamic consistency are considered principles of normative 

rationality, then why does damaging or temporarily disrupting the brain push behavior toward 

closer adherence with those normative principles?  

One possibility is that these few studies are flukes and both damaged brains and highly 

sophisticated brains can adhere to rationality for different reasons. Another possibility is that 

―normal‖ behavior is adapted to solve evolutionary challenges of survival and reproduction, while 

conserving phylogenetically-old regions inherited from other species and adding ―kludges‖ (Ely, 

2011). The result of that type of incremental adaption will sometimes violate principles of 

normative rationality. Of course, this possibility suggests a course that economists and biologists 

have been pursuing relatively recently, of deriving choice architecture from evolutionary 

principles instead of logical ones.  

 

 

 

 

 

 

 



 
 

 

 
 

 



 

 
Fig 2  Hsu et al. 

 



  
 

 

4  Intertemporal choice and self-regulation  

 

Intertemporal preferences continue to be one of the most active research topics in the field of 

neuroeconomics.  In the past decade, researchers have identified many robust empirical 

regularities, including numerous phenomena that have been shown to be mediated by biological 

mechanisms.  We begin this section by summarizing the body of empirical results in the 
intertemporal choice literature, including neuroimaging results. 

 There is no consensus on the theoretical interpretation of these empirical regularities (e.g., 

Rustichini 2008).  The competing theories can be divided into three classes: multiple-self models 

with selves that have overlapping periods of control (e.g., Thaler and Shefrin 1981), multiple-self 

models with selves that have non-overlapping periods of control (e.g., Laibson 1997), and 

unitary-self models (e.g., Gul and Pesendorfer 2001).  We turn to these theories at the end of the 
section and relate them to the available evidence. 

Empirical regularities 

The intertemporal choice literature is vast.  In this subsection, we attempt to summarize some of 
the key empirical findings, giving extra weight to the findings with a biological interpretation. 

Discount rates inferred from subject choices between smaller-sooner vs larger-later rewards, are 

anomalously high. Imputed discount functions have a higher discount rate at short horizons than 

at long horizons (e.g., Ainslie 1991, Thaler 1981, Kirby 1996).  Although these findings are often 

cited as the basic foundational results in the intertemporal choice literature, they have turned out 

to be far more complicated and problematic than originally believed (for reviews see Frederick, 

Loewenstein and O‘Donoghue 2004; Chabris, Laibson, Schuldt 2008; Halevy 2011).  In fact, it is 

now clear that they these empirical patterns were originally misinterpreted as support for 

hyperbolic discounting.  We summarize five of the most important methodological 

problems/paradoxes in the interpretation of these results.  First, most of the discounting results in 

the literature are partially driven by reliability bias: subjects probably view later rewards as riskier 

than sooner rewards even when the researchers try very hard to equate reliability across different 

dates of reward delivery (see Andreoni and Sprenger 2010 for one way of modelling such an 

uncertainty effect).  If such reliability bias is present and overlooked by the researcher, inferred 

discount rates will be biased up.  Second, there is a preference for ‗as soon as possible‘ reward 

receipt, even when the soonest reward is not available in the present (Kable and Glimcher 2006).  

This may also be a consequence of reliability bias: sooner rewards may be viewed as more 

reliable even when the ―soonest‖ possible reward is in the future. Third, measured discount rates 

display sub-additivity bias (Read 1998): the product of the discount factor measured from t to t+1  

and the discount factor measured from t+1 to t+2 is far lower than the discount factor measured 

from t to t+2.  Relatedly, (Benhabib and Bisin 2006) have argued that time preferences measured 

in the laboratory include a ‗fixed cost of delay‘ that is insensitive to the length of the delay.  

Moreover, Zauberman et al (2009) argue that subjects transform time delays with a log scale, 

thereby creating the observed gap between high short-run and low long-run discount rates.  

Fourth, the discount rates measured in laboratory experiments are too high to be consistent with 

commonly observed, voluntary behaviors, like accumulating retirement savings and home equity 

(however, Harrison et al 2009 points out that small stakes curvature in the utility function reduces 

this tension).  Fifth, in principle, smaller-sooner vs. larger-later money choices shouldn‘t measure 

discount rates at all, but should instead measure the rate of intertemporal transformation (i.e., the 



relevant interest rate for borrowing or lending; see White et al 2011).  For all of these reasons, 

there is a growing recognition that discount rates imputed from sooner-smaller vs. larger-later 

reward experiments are difficult to interpret.  Indeed, confounding factors like reliability bias, 

related uncertainty effects, and sub-additivity effects, may swamp the underlying goal of 
measuring time preferences. 

Static choice problems with temptation goods generate preference reversals.  For example, Read 

and Van Leeuwen (2001) ask their subjects to choose a snack to be eaten one week later.  

Subjects tend to choose healthy snacks.  One week later, the subjects are told that the researchers 

lost the paperwork and therefore the subjects must again pick a snack, which will now be eaten 

immediately.  Now preferences shift toward preference for the unhealthy snacks.  Qualitatively 

similar reversals have been documented with other studies (e.g., Loewenstein and Read, 2004; 

Oster and Scott-Morton 2004).   

Economic agents appear to be counterfactually optimistic about their future likelihood of 

engaging in patient behavior.  Dellavigna and Malmendier (2004, 2006) use data on the menu of 

gym fees (e.g., annual, monthly and per-visit), the frequency of membership terminations, and the 

frequency of gym visits (measured with swipe-cards) to infer that gym members have an 
excessively optimistic view of their own likelihood of future exercise. 

Economic agents are willing to pay for commitment.  Ashraf et al (2004) find that one-quarter of 

their (rural Indonesian) subjects are willing to put some of their savings in an illiquid account 

with the same interest rate as an alternative liquid account.  Beshears et al (2011) document 

similar behavior, even when the illiquid account has a slightly lower interest rate than the liquid 

account.  Moreover,  Beshears et al (2011) find that laboratory savings accounts attract more (real 

stakes) deposits the higher the penalty for early withdrawal, holding all else equal.  Numerous 

studies have documented a demand for commitment: e.g., Wertenbroch (1998); Ariely and 

Wertenbroch (2002); Karlan, Gine, and Zinman (2009); Kauer, Kremer, and Mullainathan 

(2010); Houser, Schunk, Winter and Xiao (2010); Royer, Stehr, and Sydnor (2011); Alsan, 
Armstrong, Beshears, Choi, del Rio, Laibson, Madrian, Marconi (2011). 

Imputed discount rates are negatively correlated with scores on IQ tests.   In both children 

(Benjamin, Brown, and Shapiro 2006) and adults, (Burk et al 2003, 2006), high scores on tests of 

intelligence or cognitive function correlate with low rates of measured time discounting (see 
Shamosh and Gray for a review 2009). 

Subjects are less patient when placed under cognitive load.  When subjects are asked to 

remember a relatively long string of digits, their intertemporal choices become more impatient 

(Shiv and Fedorikhin 1999; Hinson, Jameson, and Whitney 2003).  This effect has been produced 
with both food rewards and monetary rewards.  

Subjects are less patient when they are primed with affective cues; likewise, subjects are more 

patient when they are primed with abstract cues. For example, Rodriguez, Mischel and Shoda 

(1989) find that children are less willing to wait for food rewards when the food is visible. 

Likewise, children are more willing to wait for food rewards when asked to think about the 

rewards abstractly (e.g., think of pretzels as logs and marshmallows as clouds).   Loewenstein 

(1996) and Burns et al (2005) review many different visceral/affective manipulations.  In a 

neuroimaging experiment, Albrecht et al (2010) report that subjects choose more patiently and 

show less affective engagement when (i) they are making choices for themselves that only 

involve options in the future, or when (ii) they are making choices for someone else.  

Subjects show diminished willpower after performing earlier, disimilar tasks that require 



willpower.  For example, Baumeister and Vohs (2003) show that subjects are less able to sustain 

pressure on a hand-grip after suppressing the expression of emotion while watching an upsetting 
video.   

The willingness to delay gratification develops from birth to age 20 in parallel with the pre-

frontal cortex (PFC).  The PFC reaches its approximate terminal anatomical structure more 

slowly than other brain regions (Green, Fry, and Myerson 1994).  Dense neural networks are 

formed and pruned at least through the early 20‘s.  It is not known whether the association 

between PFC development and the willingness to delay gratification is causal or correlational, 
though brain injuries to the PFC provide some support for the causal interpretation ().   

The tendency to frequently delay gratification is correlated with cross-species variation in the 

proportionate size of the pre-frontal cortex.  Krietler and Zigler (1990) argue that cross-species 

variation in domain general patience is well-correlated with the ratio of PFC volume to total brain 

volume.  However, this position has been challenged by research that has argued that high rates of 

impatience in non-human species are observed in food deprived animals, invalidating 
comparisons to relatively sated human suspects (e.g., Rosati et al 2007). 

The analytic cortex (PFC and parietal cortex) has a low sensitivity to reward delay and the meso-

limbic dopamine reward system has a high sensitivity to reward delay. McClure et al (2004, 

2007) find that moving a reward further away in time causes the BOLD signal in the analytic 

cortex to decline relatively little. By contrast, the dopamine reward system displays a much more 

rapid decline in activation as rewards are delayed.  Similar results have been reported by Albrecht 
et al (2010).   

The analytic cortex is more active when a delayed reward is chosen over an immediate reward.   

McClure et al (2004, 2007) find that the BOLD signal in PFC and parietal cortex is stonger when 

a delayed reward is chosen relatively to trials in which an immediate reward is chosen.  Hare et al 

(2009) find that left DLPFC is active when subjects reject a good tasting, unhealthy snack in 
favor of a neutral alternative reward.  

The dopamine reward system has a decline in activation that follows a hyperboloid that matches 

the valuation function implied by choice.   Kable and Glimcher (2007) estimate discount 

functions using choice data and find that the BOLD signal in the mPFC matches the same pattern 

of decay.  McClure et al (2007) find a similar pattern of declining activation in the dopamine 
reward system. 

Exogenously disrupting normal functioning of the lateral pre-frontal cortex (LPFC), causes 

choices between now-vs-later rewards to shift towards the now option, but does not affect choices 

between rewards that are both delayed. Figner, Knoch, Johnson, Krosch, Lisanby, Fehr and 

Weber (2010) show that disruption of left, but not right, LPFC with low-frequency repetitive 

transcranial magnetic stimulation (rTMS) increased choices of immediate rewards over larger 

delayed rewards. rTMS did not change choices involving only delayed rewards or valuation 

judgments (in contrast to choices) of immediate and delayed rewards.  This paper provides causal 

evidence for a neural lateral-prefrontal cortex–based self-control mechanism in intertemporal 
choice. 

 

Multiple-self models with selves that have overlapping periods of control 

Three classes of models have been used to organize and explain these findings.  We first 

discuss multiple-self models that have overlapping periods control.  We then discuss multiple self  



models with non-overlapping periods of control.  Finally, we discuss unitary self models with 

dynamically consistent preferences.   We emphasize that all of these models have been set up so 
they make similar qualitative predictions.  Hence, they are difficult to distinguish empirically.   

Some multiple self models posit the co-existence of multiple neural systems with 

occasionally conflicting goals/preferences.  These systems struggle to control or influence the 

choices of the decision-maker.  Models in this class first gained wide acceptance after Freud 

argued that human choice is explained by an ongoing conflict among a conscientious superego, a 

self-interested ego, and a passion-driven id.   Related ideas were also advocated by Smith  (1775) 

who drew a distinction between people‘s ―interests‖ and their ―passions.‖ Smith frequently 

discussed internal struggles between these conflicting sets of preferences.  Frederick and 
Kahneman (2005) and Kahneman (2011) have also developed such models. 

In the modern psychology literature dualities are drawn between controlled and automatic  

cognition (Schneider & Shiffrin, 1977), cold and hot processing (Metcalfe and Mischel, 1979), 

System 2 and System 1 (Frederick and Kahneman, 2002), deliberative and impulsive decision-

making (Frederick, 2002), conscious and unconscious processing (Damasio, Bem), and effortful 

and effortless systems (Baumeister).  Neuroimaing research has led to theories that locate system 

with impatient proclivities in the meso-limbic dopamine system and a system with relatively 

patient goals in the PFC and parietal cortex (McClure et al 2004, 2007; Hare et al 2009).  These 

authors argue that the PFC is the seat of self-regulation, self-control and executive function.  

Individuals with a comprised PFC (e.g., due to cognitive load, lack of cognitive development, 

willpower exhaustion, injury, or interventions like transcranial magnetic stimulation) are more 
likely to make relatively impatient choices. 

Some economists have also proposed two-system models, including models that contrast 

―planner‖ and ―doer‖ systems (Shefrin and Thaler, 1981), patient and myopic systems 

(Fudenburg and Levine, 2006), and abstract and visceral systems (Loewenstein & O‘Donoghue 
2006; Bernheim & Rangel, 2003). 

Multiple-self models with selves that have non-overlapping periods of control 

 Researchers have also advocated models with dynamically consistent preferences 

generated by a unitary self at each point in time.  Strotz (1957) was the first to propose such a 

framework, though his ideas were anticipated by Ramsey (1928) and Samuelson (1931).  Strotz‘s 

ideas were applied by Laibson (1997) and O‘Donoghue and Rabin (1999), who used a model of 

intergenerational preferences proposed by Phelps and Pollak (1968) to study intra-personal 

discounting.  This model is sometimes referred to as quasi-hyperbolic discounting, present bias, 

or hyperbolic preferences.  In this model, the agent has a well-defined (unitary) set of preferences 

at each point in time.  But the agents‘ preferences at date t conflict with the agent‘s preferences at 

all future dates.  If the agent anticipates these conflicts, she will attempt to constrain or commit 
her own future behavior.  

 More formally, the model posits that the discount function at date t is given by 1 (t=0) and 

discount function values at times t>1 are   t where β and  are weakly bounded between 0 and 1. 

To understand the mechanics of this model, consider the illustrative case =1.   Now the model 

implies that current rewards have full weight, and any future reward has weight . It is easy to see 

how this framework generates dynamically inconsistent preferences (and therefore a potential 

taste for commitment).  From the perspective of date 0, dates 1 and 2 both have weight  so a unit 

reward at date 1 is worth just as much as a unit reward at date 2.  But from the perspective of date 

1, a unit reward at date 1 is worth 1/ times the value of a unit reward at date 2.  Hence, the 

unitary self at date 0 and the unitary self at date 1 don‘t agree on the relative value of rewards at 



dates 1 and 2. 

 McClure et al (2004) point out that the -  model can also be interpreted as a model with 

multiple simultaneous selves.  Specifically, posit the existence of two selves.  One self is an 

exponential discounter with discount factor . A second self is an exponential discounter with an 

arbitrarily small discount factor.  Suppose that the two selves combine their preferences with 

weights  and 1-.  Then the aggregate (weighted) preference is 1 for immediate rewards and  t 

for future rewards). 

Unitary-self models 

 In the last decade, researchers have realized that phenomena like commitment are not 

necessarily inconsistent with unitary self models that feature dynamically consistent preferences. 

These models assume that agents have preferences over choice sets.  Specifically, agents may 

prefer not to have an option in their choice set, even if they do not pick that alternative.   For 

example, an agent on a diet may find exposure to a tempting food aversive even if that tempting 

food is in fact not consumed.  Dekel et al (2008) and Gul and Pesendorfer (2001) have proposed 

models in this class.  Laibson (2001) and Bernheim and Rangel (2004) propose related models in 

which menu-based temptation effects are endogenously dependent on past associations between 

cues/menus and rewards.  Such endogenous temptation models are based on the classical 

conditioning paradigm first proposed by Pavlov (XXX) and application of those principles to 

associations with environmental cues (e.g., heroin addicts craving when they see former co-users; 
see Siegel, CITE)    

 It is not clear how the theoretical literature will develop going forward.  Proponents of 

multiple self models argue that their models closely correspond to psychological/neural evidence. 

However, Kable and Glimcher (2004) provide neuroimaging evidence that challenges these 
claims.  There is an ongoing debate over the neural foundations of multiple self models. 

Proponents of present-bias argue that parsimony and predictive accuracy support their 

modeling framework.  These models make strong predictions that match available data (Laibson, 

Repetto, and Tobacman 2010) and they provide an empirically validated theory of misforecasting 

(Della Vigna and Malmendier 2004, 2006).  However, present-bias models violate classical 
welfare assumptions and introduce the possibility of multiple equilibria. 

Finally, proponents of dynamically consistent (unitary self) models tend to prefer these 

models on principle, because these models do not violate classical assumptions and provide a 

well-defined welfare criterion.  However, they rarely make quantitative predictions, so they are 
difficult to evaluate empirically. 

 

5 The neural circuitry of social preferences  

 

In this section, we review evidence about the neural processes that govern deviations from purely 

self-interested behavior (i.e., the neural circuitry of social preferences7). The evidence is based on 

neuroeconomic studies that combine noninvasive neuroscience tools – such as fMRI, TMS and 

tDCS8– with behavioral games used in experimental economics. The neuroeconomic approach 

                                                 
7
 This section draws heavily on (and overlaps with) the work of Fehr and Camerer (2007) and Fehr (2009). 

Readers who are interested in a more detailed account can find details in those papers.  
8
 Transcranial direct current stimulation. 



aims to provide a micro-foundation of social preferences in terms of the underlying neural 

networks, which will eventually be achieved with the development of formal models of the 

underlying brain circuitry showing how the assumptions and parameters of behavioral models of 

social preferences relate to the empirically verified assumptions and parameters of the brain 

model. This will lead to a better understanding of the nature of social preferences, and the sources 

of individual differences in other-regarding behaviors, including pathologies.  

Theories of social preferences are based on the concept of decision utility (D. Kahneman, 

1994). Decision utility is a utility function that predictions observed decisions. Decision utility 

can, in principle, be distinguished from (a) experienced utility, which is the hedonic experience 

associated with the consumption of a good or an event, (b) anticipated utility, which is the 

anticipation of experienced utility at the time of decision-making, and from (c) remembered 

utility, which is the experienced utility consumed when remembering past actions and events.  

A central question, which recent studies address, is how the brain constructs decision 

utilities when a person‘s behavior reflects his or her own rewards but is also governed by 

competing social preferences such as warm glow altruism, reciprocity, or inequity aversion. This 

general question implies a host of other important questions such as: Is self-interest a primary 

motive that appropriate inhibitory machinery needs to constrain? If so, which brain circuitry is 

involved in these inhibitory processes? To what extent are these processes related to emotion 

regulation? Do the positive hedonic consequences associated with non-selfish behaviors partially 

govern deviations from economic self-interest and, if so, are these complex social rewards 

represented in the striatum and the OFC like primary or monetary rewards (B. Knutson and J. C. 

Cooper, 2005, P. O'Doherty J, 2004), or do they rely on different neural circuitry?  

 

Social preferences and reward circuitry 

Theories of reciprocity and inequity aversion imply that subjects prefer the mutual cooperation 

outcome over the unilateral defection outcome in the canonical prisoners‘ dilemma game, even 

though unilateral defection leads to a higher economic payoff. Although these theories do not 

make assumptions about the hedonic processes associated with fairness related behaviors 

(because they rely on decision utilities), a plausible interpretation of these theories is that subjects 

in fact derive higher hedonic value from the mutual cooperation outcome (J. W. Thibaut and H.H. 

Kelley, 1959). Therefore, a natural question is whether we can find neural traces of the special 

reward value stemming from the mutual cooperation outcome. Two neuroimaging studies (J. K. 

Rilling et al., 2004, James K Rilling et al., 2002) report activation in the ventral striatum when 

subjects experience mutual cooperation with a human partner compared to mutual cooperation 

with a computer partner. Given substantial evidence that primary and secondary reward 

anticipation activates the striatum, these studies suggest that mutual cooperation with a human 

partner is especially rewarding (holding financial consequences fixed through the computer 

partner control).  

Social preference theories also predict that subjects prefer punishing unfair behavior such 

as defection in public good and PD games because leaving an unfair act unpunished is associated 

with higher disutility than bearing the cost of punishing an unfair act. In this view, it is natural to 

hypothesize that the act of punishing defection involves higher activation of reward circuitry. A 

PET study (D. DeQuervain et al., 2004) examined this hypothesis in the context of a social 

dilemma game with a punishment opportunity. This study showed that the dorsal striatum 

(caudate nucleus) is strongly activated in the contrast between a real punishment condition (in 

which the assignment of punishment points hurts the defector in economic terms) and a symbolic 

punishment condition (where the assignment of punishment points did not reduce the defector‘s 

economic payoff). In a another study Singer et al. (2006)documented that men (but not women) 



who passively observe that a defector in a PD is punished by a third party show reward related 

activation in the ventral striatum. 

Further evidence that decisions involving social preferences are associated with activity in 

reward circuitry comes from fMRI studies of charitable donations (William T. Harbaugh, Ulrich 

Mayr and Daniel R. Burghart, 2007, J. Moll et al., 2006), reactions to offers in a take-it-or-leave-

it ultimatum bargaining game (Tabibna Golnaz, Ajay B. Satpute and Matthew D. Lieberman, 

2007), and from distribution tasks (E. Tricomi et al., 2010). Ventral tegmental (VTA) and striatal 

areas are both activated by receiving money and by making non-costly donations, indicating that 

"giving has its own reward" (J. Moll, et al., 2006). Across subjects, those who made more costly 

donations also had more activity in the striatal reward circuitry. In one study (William T. 

Harbaugh, Ulrich Mayr and Daniel R. Burghart, 2007) subjects in a forced-donation condition 

passively observed money being transferred to themselves or to a charity. In a voluntary 

condition, subjects could decide whether to accept these monetary transfers. Subjects reported 

higher satisfaction in both the forced and the voluntary condition if the charity received a transfer 

(controlling for the subject‘s cost of this transfer). Moreover activations in dorsal and ventral 

striatum in both conditions are positively correlated with the money that goes to the charity. Thus, 

all else equal, subjects seem to experience charitable donations as rewarding because the very 

same reward areas that are activated when the subjects themselves receive a monetary transfer are 

also activated when the subjects make a costly transfer to a charity.  

Neural evidence for inequality aversion was reported by Tricomi et al. (2010). In pairs of 

subjects, one ―rich‖ subject randomly received a $50 endowment at the beginning of a trial (the 

other ―poor‖ subject did not, but knew the other subject had received the bonus). Both subjects 

then rated the outcome of additional transfers to ―self‖ and "other‖ during fMRI. The rich 

subjects showed a significantly higher activation in reward related areas (e.g. ventral striatum) for 

transfers to ―other‖ compared to ―self‖, while the poor subjects showed higher neural reward 

activation for transfers to ―self‖ compared to ―other‖. The authors‘ interpretation is that the rich 

subject is rewarded by a reduction in the gap between his or her earnings and the poor subject‘s 

earnings, and the poor subject finds an increase in the wealth gap negatively rewarding. Finally, a 

recent ultimatum game study (Tabibna Golnaz, Ajay B. Satpute and Matthew D. Lieberman, 

2007) provides evidence suggesting that the fairness of a bargaining offer – controlling for the 

absolute size of the monetary gain – is associated with activation in the ventral striatum. The 

same dollar bargaining offer of, say $5, elicits higher striatal activation if it represents a fair share 

(say 50%) of the amount which is being bargained over, compared to when that dollar offer 

represents a small share (only 15%, for example). 

The activations observed in these studies and several others indicate that social rewards 

commonly activate the dorsal or ventral striatum. There is substantial overlap between these areas 

of activation and activation observed in studies of reinforcement learning or anticipated money 

reward (E. Fehr, 2009, E. Fehr and C. F. Camerer, 2007). This overlap is consistent with the 

hypothesis that social preferences are similar to preferences for one‘s own rewards in terms of 

neural activation, which is supportive of theories in which decisions reflect a weighted balance 

between self-interest and the interests of others.  

The studies described above use the simplest multiperson paradigms that allocate money 

between people or entities. These are important building blocks. Some recent studies consider 

how the neural circuitry of prosocial behaviors and emotions is affected by various factors.  

One topic is ―social image‖: How does knowing another person will observe you affect 

brain activity and choice? Economists have become interested in this topic (e.g. Bernheim and 

Andreoni, 2009) and it is important since social image could be affected by many details of how 

information and institutions are organized. An fMRI study showed that activity in bilateral 



striatum was stronger when Japanese subjects were being observed making charitable donations, 

compared to no observation (Izuma, 2008), which is consistent with the hypothesis that reputation 

derived from charitable donations is rewarding. A follow-up study showed that American autistic 

adults exhibit no sensitivity to being observed (compared to matched controls; Izuma et al., in 

prep). 

Consistent with a broad concept of inequity-aversion, one study focused on whether 

knowing that a high-status person suffers a setback produces a positive reward from 

―schadenfreude‖. Activity in response to hypothetical scenarios was found in ventral striatum 

(and BOLD signal correlated with self-rated responses; Takahashi et al., 2009). This result 

resembles the finding of Singer et al. (2006) mentioned above.  

Social preferences and emotions are also likely to play a role in non-economic domains. 

One neural study exploring this topic presented vignettes based on actual murder cases with 

―mitigating circumstances‖, such as a husband murdering his wife to prevent her further 

suffering. Judges and juries are typically required to consider these circumstances during 

sentencing, even when the guilt of the murderer is established. Yamada et al. (2011) found that 

insula activity, a known correlate of simpler kinds of empathy, was associated with the strength 

of sentence reduction.  

Do activations in reward circuitry predict choices? 

The evidence above is consistent with the view that costly pro-social acts are rewarding. 

However, the hedonic interpretation of social preference theories also implies that these acts 

occur because they are rewarding. If it could be shown that higher activations in the striatum 

imply a higher willingness to act altruistically, the case for the reward interpretation would be 

strengthened considerably.  

Neuroimaging data do not allow causal inferences. However, it is possible to move towards 

causality by predicting choice behavior in one treatment (―out of treatment‖ forecasting) from 

neural activity in another treatment. For example, individual differences in caudate nucleus 

activation when punishment is costless for the punisher predicts how much individuals actually 

pay for punishment when it is costly (D. DeQuervain, et al., 2004). Likewise, individual 

differences in striatal activity in the condition where donations are forced predicts subjects‘ 

willingness to donate money to charities in the condition in which donations are voluntary 

(William T. Harbaugh, Ulrich Mayr and Daniel R. Burghart, 2007). These results further support 

the reward interpretation of social preferences, which in turn provides support for the hypothesis 

of a common neural currency of social rewards and other primary and secondary rewards (P. R. 

Montague and G. S. Berns, 2002).  



The role of the prefrontal cortex (PFC) in decisions involving social preferences 

If people have social preferences, the brain must compare social motives and economic self-

interest and resolve conflict between them. Several studies indicate that the prefrontal cortex, a 

brain region that evolved recently (in evolutionary time) plays a decisive role in this conflict 

resolution. For example, the ventromedial PFC (BA 10, 11) has been implicated (DeQuervain et 

al. 2004) in the contrast between a costly punishment condition and costless punishment of 

players who behaved unfairly; this result is consistent with the hypothesis that this area is 

involved in the integration of separate benefits and costs in the pursuit of behavioral goals 

(Narender Ramnani and Adrian M. Owen, 2004). In charitable donations (J. Moll, et al., 2006), 

the contrast between altruistic decisions involving costs and no costs also showed activation of 

the VMPFC (BA 10, 11, 32) and the dorsal anterior cingulate cortex (ACC). Since the ACC is 

thought to play a key role in conflict monitoring (M. M. Botvinick et al., 2001), activity in this 

region is consistent with the existence of a trade-off between self-interest and pro-social motives.  

The role of the VMPFC in decisions involving costly altruism is also interesting because of 

related activation in this region in other studies. The VMPFC is involved in emotional processing 

and moral judgment (M. Koenigs et al., 2007, J. Moll et al., 2005), in integrating the value of 

consumer products and their prices (B. Knutson et al., 2007), in the encoding of the willingness to 

pay for consumer goods, lotteries (V. S. Chib et al., 2009, A. Rangel and T. Hare, 2009), and 

charitable donations (T. A. Hare et al., 2010). Lesions to VMPFC are also associated with poor 

choices in various situations (A. Bechara et al., 1997, A. R. Damasio, 1995) which require 

integrating costs and benefits, and in reduced prosociality (Krajbich et al., 2009). The Hare et al. 

(2010) study shows that activity in VMPFC is positively correlated with charitable donations 

consistent with the view that emerged from many other studies (V. S. Chib, et al., 2009, A. 

Rangel and T. Hare, 2009), that this area of the brain encodes decision utility. In addition, the 

value signal in the VMPFC is modulated by other signals in the posterior superior temporal 

cortex which have been shown to be important for overcoming egocentricity bias (pSTC), 

indicating that VMPFC and pSTC activity are key components of the neural circuitry of social 

preferences. This does of course not mean that these areas are exclusively dedicated to the 

processing of social preferences. Rather, in the case of the VMPFC, for example, the studies 

suggest a general role for this region in integrating emotional feelings about costs and benefits, 

regardless of whether these choices involve economic consumption goods or ―non-economic‖ 

goods such as the subjective value of acting altruistically.  

The dorsolateral prefrontal cortex (DLPFC) probably also plays an important role in the 

processing of decisions involving social preferences (Alan G. Sanfey et al., 2003). This study 

examined the neural circuitry involved in the recipient‘s behavior in an ultimatum game where 

the rejection of low positive offers involves a motivational conflict between fairness and 

economic self-interest. It reports activation of bilateral DLPFC and bilateral anterior insula (AI) 

in the contrast between ―unfair>fair‖ offers. In addition, the higher the activation of right AI, the 

more likely a subject is to reject an unfair offer, suggesting that AI activation may be related to 

the degree of emotional resentment of unfair offers. The DLPFC activation may represent the 

cognitive control of the emotional impulse to reject unfair offers.  

The interpretation that DLPFC activity represents the cognitive control of the impulse to 

reject implies that interfering or disrupting DLPFC activity reduces the control of the impulse and 

should, thus, increase the rejection rate. Knoch et al. (D. Knoch et al., 2006) tested this hypothesis 

by reducing the activation in right and left DLPFC with low-frequency transcranial magnetic 

stimulation (TMS). Surprisingly, the study found that TMS of right DLPFC increases the 

acceptance rate of unfair offers relative to a placebo stimulation (from 9% to 44%), while TMS 

of left DLPFC did not affect behavior significantly (relative to a placebo condition). This finding 

suggests that right DLPFC is causally involved in controlling the impulse that pushes subjects 



towards accepting unfair offers, i.e., in controlling or weighing economic self-interest. 

Interestingly, the disruption of right DLPFC only affects subjects‘ fairness related behaviors but 

not their fairness judgments, i.e., they still judge low offers to be very unfair, but they 

nevertheless accept them more frequently and more quickly. A similar dissociation between 

fairness judgments and fair responder behavior has been observed in Knoch et al (D. Knoch et al., 

2007) where the authors down regulate the activity of the right DLPFC with TDCS. Another 

TMS study (D. Knoch et al., 2009) shows that the right DLPFC is also causally involved in the 

formation of individual reputations as a trustworthy agent in a repeated trust game, since 

disruption leads to more untrustworthy behavior which harms reputation. Apparently, when 

subjects face a trade-off between the short run benefit of cheating their current partner and the 

long-run benefit of having a good reputation when facing future partners in the trust game, a 

functioning DLPFC seems to be necessary to enable subjects to decide in favor of their long-run 

benefit. This role of the DLPFC in overcoming short-run self-interest has also been corroborated 

in Spitzer et al (2007); this study shows that stronger compliance with a social norm in the face of 

a possible sanctioning threat is strongly correlated with the strength of DLPFC activity.  

In a recent study, Baumgartner et al. (2011) applied TMS and fMRI to responders in the 

ultimatum; they were either stimulated with TMS to the right or the left DLPFC and one control 

group was not stimulated at all. Subsequently, they played the ultimatum game during fMRI. This 

combination of methods enables the examination of the causal impact of TMS on behavior and 

the identification of the neural circuitry that is causally involved in the behavioral change. 

Interestingly, subjects who received TMS to the left DLPFC or no TMS (i.e., the ―normal‖ 

subjects) show a much higher rejection rate of unfair offers than subjects who received TMS to 

the right DLPFC (i.e., the ―deviant‖ subjects). In addition, the normal subjects display 

significantly higher activity in, and connectivity between, the right DLPFC and the VMPFC when 

they receive unfairly low offers. These findings are consistent with the view that the activation of 

right DLPFC and VMPFC, and the connectivity between them, is causally involved in regulating 

the decision utility of rejecting unfair offers.  

 

One emerging theme of the studies reviewed in this section is that social reward activates 

circuitry that overlaps circuitry which anticipates and represents other types of rewards to a 

surprising degree. These studies reinforce the idea that social preferences for donating money, 

rejecting unfair offers, and punishing those who violate norms, are genuine expressions of 

preference. The social rewards are traded off with subjects‘ economic self-interest; the 

dorsolateral and the ventromedial prefrontal cortex are likely to be crucially involved in the 

balancing of competing rewards and the computation of decision utilities. Non-invasive brain 

stimulation can alter these neural processes and subjects‘ behaviorally expressed social 

preferences. This establishes the causal relevance of the identified neural computations for 

subjects‘ behavior. 

However, brain stimulation is not the only way of establishing the causal relevance of 

fMRI-identified neural circuitry for subjects‘ behavior. In recent years, several papers indicate 

that the great potential of pharmacological experiments. Testosteron has been shown to enhance 

the fairness of bargaining offers in the ultimatum game (C. Eisenegger et al., 2010); the 

neurohormone oxytocin increases trusting behavior but not trustworthiness (M. Kosfeld et al., 

2005); the depletion of the neurotransmitter serotonin increases the rejection rate in the ultimatum 

game (M. J. Crockett, 2009, M. J. Crockett et al., 2008) and benzodiazepine reduces the rejection 

rate (K. Gospic et al., 2011). In several cases the pharmacological intervention was combined 

with fMRI so that the researchers were able to identify the neural circuitry causally involved in 

the behavioral change (T. Baumgartner et al., 2008, K. Gospic, et al., 2011). While space limits 



prevent us from going into the details these studies further confirm the rapid progress that has 

been made in recent years in this field.  

 

6. Strategic thinking  

 

Game theory started as applied mathematics describing ―solutions‖ to games based on 

idealized play. Over several decades, game theory grew to include experimental studies, more 

psychologically realistic models (e.g., Camerer 2003), evolutionary modeling, and design 

applications. Neuroscience could contribute to game theory by identifying strategic algorithms 

that are being implemented in the brain. In addition, game theory could be of special use in 

neuroeconomics by parsing how general reward and learning structures combine with specialized 

social inference mechanisms (such as ―theory of mind‖) to determine strategic choice.  

 

This section is organized around the bold idea that the neural basis of strategic thinking is 

likely may have separable components corresponding to the mathematical restrictions imposed in 

different kinds of game theory. This simplification will surely turn out to be wrong on many 

details. However, it is certainly likely that different components of strategic thinking and 

execution require different cognitive capacities that are primarily located in different brain 

regions (and are differentially developed across species). If these different kinds of cognitive 

capacities have special value in certain types of games, then there will be some association 

between brain regions and strategic choices.  

For example, a recent study (Martin et al., 2011) showed that chimpanzees make choices in 

two-strategy matching pennies games which are both closer to (mixed) Nash equilibrium than 

comparable human choices, and about as statistically independent of past observations as human 

choices are. The chimps behave more game-theoretically than humans! However, in these games, 

the main cognitive skill is detecting patterns in choices by others and disguising one‘s own 

patterns from others. Chimps are actually better at short term detection and spatial pattern 

memory than people. This example illustrates how a highly specialized cognitive skill could 

account for differences in behavior (between species) in a narrow class of games.  

 

We discuss four aspects of strategic thinking and what is known about neural activity during 

those types of thinking: 

 

1. Strategic awareness that outcomes are affected by actions of other players 

2. Beliefs and iterated beliefs about what other players will do and think;  

3. Learning about the value of strategies, perhaps by reinforcement or counterfactual     

―fictive‖ (model-based) learning 

4. Strategic teaching, the valuation and adjustment of behavior by anticipating the effects of 

one‘s current action on another player‘s beliefs and future behavior.  

 

  

The additional topic of social preference (how outcomes other players receive are valued) is 

discussed in another section of this chapter.  

 

Strategic awareness 

 

The most basic idea in game theory is that people are strategically aware that their 

outcomes depend on choices by other players. While these seems obviously true for educated 

adults, strategic awareness may well be absent for human children, other species, in causally 



complex environments, and in disorders associated with deficits in social reasoning (such as 

autism).  

Neural evidence: Several studies have shown differential neural activation when playing 

a game against a human opponent, compared to a computer (e.g., Gallagher et al. 2002; McCabe 

et al. 2001; Coricelli & Nagel 2009). These papers are methodologically challenging, because it is 

crucial to control for comparability of the behavior of humans and computers (and particularly its 

expected reward value) in the presence of feedback. Nonetheless, the studies are highly 

suggestive that agents used specialized neural processes when playing other humans.   

 

Beliefs, iterated beliefs and strategic choice 

 

 If players have some strategic awareness, then what strategic choices do players make if 

they know they are playing other players? Based on subjective utility theory, a natural theory is 

that players form beliefs about what other players will do and their strategic choices reveal those 

beliefs.   

The most elegant and prominent assumption in game theory is that beliefs are in (Nash) 

equilibrium, which is equivalent to mutually rational players having mutual knowledge of one 

another‘s strategies. That is, in equilibrium  players have somehow correctly figured out what 

others will do and optimize given their beliefs. However, equilibration is unlikely to come from 

preplay analysis of a game, and instead is likely to come from experience (as in learning models), 

evolutionary adaptation, or preplay communication. 

It is highly unlikely that the brain would directly compute an equilibrium strategy, let‘s 

turn attention to a family of theories which is more neurally plausible—cognitive hierarchy (CH) 

or level-k theories.  

These theories assume that players form beliefs by iterating through steps of thinking 

(probably 1-3 steps). The iteration starts with a level-0 player who chooses according to a simple 

heuristic (e.g., randomly, or using perceptual salience). Agents doing one or more steps of 

thinking compute what lower-level thinkers will do and best-respond or imperfectly ―better-

respond‖ using a softmax response.9  

The behavioral evidence in support of these CH theories is that predictions about 

aggregate choices are typically better approximations of actual human play than equilibrium 

theories.  Importantly, they appear to explain both deviations from equilibrium predictions in one-

shot play, and also explain when equilibrium predictions are surprisingly accurate (even with no 

learning; see Camerer, Ho & Chong 2004; Crawford, Costa-Gomes & Iriberri 2010).  

Direct cognitive evidence for steps of thinking comes from eyetracking and mouse-

based studies. These studies record what information subjects are looking at, and for how long. 

Then the theory can be tested as a joint hypothesis about information search and choices resulting 

from that search. For example, level-2 players must look at other players‘ payoffs to choose 

strategies, but lower level players do not. So the theories predict an association between looking 

at the payoffs of other players and frequency of higher-level choices, The earliest studies, going 

back at least two decades, showed approximate conformity of thinking steps to associated 

predictions of information search by different types (e.g., Camerer et al. 1993; Johnson et al. 

2002). More recent studies showed even clearer conformity of imperfect information lookup and 

choice (Costa-Gomes, Crawford & Broseta 2001; Costa-Gomes & Crawford 2006; Wang, Spezio 

& Camerer 2010; Brocas et al. 2009).  

There is also modest to high intrapersonal reliability across games of an individual‘s 

classified level type (although probably lower than levels of reliability for the most stable traits, 

such as IQ and extraversion). For example, Chong, Ho and Camerer (2005) computed a 

                                                 
9
 See Camerer et al. 1993; Nagel 1995; Stahl and Wilson 1995; Costa-Gomes, Crawford & Broseta 2001; 

Camerer, Ho & Chong 2004; Crawford et al., 2010. 



correlation of  +.61 between a subject‘s average estimated levels in two separate groups of 11 

games. There are also modest correlations between estimated thinking levels and both working 

memory (Devetag & Warglien 2003) and ―theory of mind‖ emotion detection skill (Georganas, 

Healy & Weber 2010).  

Neural evidence: A small number of neuroimaging fMRI studies have explored the 

neural underpinnings of strategic belief formation and depth of thinking. 

Bhatt and Camerer (2005) considered the processes of choice and first and second order 

belief formation in two-player, dominance-solvable matrix games with 2-4 strategies. In each trial 

subjects either made a choice in the game, guessed what the other player would do (i.e., stated 

first order beliefs) or guessed the other player‘s first order beliefs about their own choice (i.e., 

stated second order beliefs). In order to isolate the process of reasoning without ‗interference‘ 

from learning, there was no feedback.  

A simple hypothesis consistent with CH modeling is that many subjects will use different 

reasoning processes in choosing and forming beliefs. For example, level 0 and 1 players may 

spend no time forming a belief; this could be manifested as substantially greater activity in value-

oriented regions during choice than in guessing. Indeed, when subjects‘ choices and beliefs were 

out of equilibrium10, the choice task elicited significantly more activity in medial prefrontal cortex 

(mPFC) and DLPFC (involved in working memory and self-control). However, when subjects‘ 

choices and beliefs were in equilibrium, activation patterns were not significantly different in 

choice and guessing trials in a small area of the ventral striatum  (probably associated with 

differential rewards in the two types of trials).  

Bhatt and Camerer also defined a measure of ―strategic intelligence‖ (SIQ) based on each 

player‘s expected payoffs and belief accuracy.  High SIQ subjects had significantly greater 

activation in the caudate (a reward-related area) and precuneus.  Conversely, people with lower 

SIQ had significantly more activation in the left insular cortex, an area strongly associated with 

emotional discomfort, and financial risk and uncertainty (e.g., Mohr, Biele & Heekeren 2010). 

Thus, poor strategic performance seems to reflect high internal strategic uncertainty, as ‗felt‘ by 

in the insula. 

Kuo et al. (2009) did fMRI during play of asymmetric dominance-solvable games and 

matching games. Games varied in difficulty (corresponding to the number of steps of iterated 

reasoning necessary to reach Nash equilibrium).  Activation in the precuneus scaled with the 

difficulty of these games. They also studied simple matching games that had the same formats as 

the dominance solvable games, but in which reward was maximized if you chose the same target 

as a partner. They found that the middle insula correlated with a measure of how ―focal‖ a game 

was (and also with expected payoff), as if focality is associated with a bodily ―gut feeling‖ 

projected to insula.  

Coricelli and Nagel (2009) focused on the ―p-beauty contest‖, in which subjects choose 

numbers in the interval [0,100] and win if their number is the closest to a multiplier p times the 

average number.  Their subjects played a series of games with different values of the multiplier p 

(and no feedback) against both humans and computers (which chose randomly from all numbers).  

They were able to classify people by behavior rather sharply into level-1 thinkers, who 

choose close to p*50 in most games, and level-2 thinkers who choose p250. They found 

significantly more activation in dmPFC (paracingulate) and vmPFC and bilateral tempero-parietal 

junction (TPJ) (see Figure 1). These are areas that are rather well-established to be part of a 

candidate ―theory of mind‖ circuit used to compute the intentions, beliefs and desires of others 

(e.g., Amodio & Frith, 2006). They also find a positive correlation (r = .84) across subjects 
between activity in dmPFC and how close  a subject was to winning.  
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 Being ―in equilibrium‖ is defined behaviorally, as trials in which choices are best responses to beliefs, 
and both beliefs and second-order beliefs match choices and beliefs of other players. 



Yoshida et al. (2008) create a recursive-belief model similar to the cognitive hierarchy 

approaches and apply it to the game of stag hunt. In their games, two low-value rabbits are 

present on a two-dimensional grid. A high-value stag is also present. Two players make 

sequential one-step moves either toward the stag (who also moves) or toward a rabbit. The game 

ends when either of the players reaches a rabbit target or when the two players end up adjacent to 

the stag, ‗capturing‘ it. 

They formalize a Bayesian notion of steps of recursive anticipation. The model creates 

trial-by-trial computational regressors. Using fMRI, they find that entropy about opponent 

thinking steps (strategic uncertainty) activates medial prefrontal cortex (paracingulate) and 

posterior cingulate. The level of strategy the subject seems to use is correlated with DLPFC as 

well as frontal eye field and superior parietal lobule. They suggest that paracingulate is activated 

in mentalizing to determine opponent‘s strategic thinking type, and DLPFC is involved in 

implementing planning ahead and working memory during ‗deep‘ strategic thinking‘ (planning 

ahead several moves, as in chess, especially given their visual display of the game on a grid). 

 
Learning 

 

Many empirical studies have examined how human (and monkey) agents learn to adjust 

their strategies in games (see Camerer 2003, ch. 6). While there is a huge literature on the 

neuroscience of animal and human learning in simple decisions, there is only a small intersection 

combining estimation of empirical models of human learning and neural observation.   

Two popular theories are reinforcement, and belief learning (e.g., fictitious play). In 

reinforcement learning, strategy values are adjusted by payoffs (or prediction error). In belief 

learning, beliefs about what others will do are adjusted by observation and then used to compute 

expected payoffs and guide choice. One popular form of belief learning is weighted fictitious play 

(WFP), in which beliefs are a weighted average of observed past choices by opponents. Camerer 

and Ho (1999) noted that learning according to WFP is exactly the same as a general type of 

reinforcement learning in which strategies that are not chosen are also reinforced according to a 

foregone payoff, sometimes called ―fictive learning‖. (This kind of learning is sometimes called 

―model-based‖ because it requires a model, or understanding of how all possible choices lead to 
possible payoffs, to compute fictive payoffs.)  

From a neural point of view, the observation that WFP is a kind of reinforcement invites 

consideration of a general model in which strategy values combine both reinforced payoffs and 

foregone payoffs. In a useful class of models, the fictive weight is  times the reinforcement 

weight of one, perhaps because they those value signals are computed differently in the brain and 

weighted differently in guiding behavior. Empirical estimates from behavior in many games 

suggest that the fictive learning weight  is between 0 and 1. These data suggest subjects do use 

―model-based‖ information about foregone payoffs, but may not weigh that information as 

heavily as received rewards.  

A plausible hypothesis about locations of neural activity is that reinforced value 

computations are encoded by prediction error in the midbrain and ventral striatum (as shown by 

many studies). These are phylogenetically older regions shared by humans and many other 

species, an anatomical observation that is consistent with the vast array of evidence that 

reinforcement learning processes are common across species. Some studies indicate that regret 

signals are encoded in orbitofrontal cortex (Coricelli, Dolan, Sirigu 2007); since fictive learning 

is typically based on imagined counterfactuals, like those which create regret, it is plausible that 

these signals would be encoded in OFC and connected areas.  

Neural evidence: Available neuroscience studies reject the simple bases case in which 

there is no fictive learning (i.e.,  = 0) and fictive learning as strong as learning from received 

rewards (=1).  Lohrenz et al. show fictive learning signals in VStr similar to prediction error 



signals from actual rewards (Lohrenz et al. 2007). Mobbs et al. (2009) show activation in 

response to rewards earned by similar others, which suggests a more general model in which 

learning can be both fictive and based on learning from observing others (perhaps depending on 

―social distance‖).  

Hayden, Pearson, and Platt (2009) also record fictive learning signals from dorsal ACC 

neurons in rhesus monkeys. They show that the monkeys do respond to fictive rewards (if a high-

value target was in a location they didn‘t choose, they are more likely to choose it next time). The 

ratio of neural firing rates in response to fictive versus experienced reward is around .70, which 

suggests a crude estimate of an EWA relative weighting  parameter.  

Fictive learning is a special kind of ―model-based‖ learning in computational 

neuroscience. In model-based learning, agents use the knowledge of how the values of multiple 

choice objects are linked—through a ―model‖— to update assigned values of all objects after 

receiving a learning signal from one chosen object. Hampton et al. (2008) show clear learning 

signals corresponding to model-based learning.   

Thevarajah et al. (2010) looked for neural correlates of EWA learning in a matching 

pennies game. In their experiment two rhesus macaques made choices, through eye saccades, 

against a computerized opponent designed to exploit temporal patterns in the macaques‘ play. 

Single-unit electrode recording measured neural firing in intermediate superior colliculus (SCi). 

SCi is a region that topographically maps saccade sites, and also projects to premotor neurons and 

also to dopaminergic sites in the midbrain (ventral tegmental area and substantia nigra) so it is a 

sensible a priori candidate for encoding the value of a saccade (i.e. a strategy choice, given how 

the game is played). They find a strong correlation between SCi firing rates and EWA strategy 

values in one monkey, and a modest correlation in the other monkey.  

 
Strategic teaching and influence value 

 

The learning theories described in the last section above are all adaptive; that is, they 

adjust either estimated strategy value or adjust beliefs in response to previous experience. A 

further step is ―sophistication‖—that is, players form beliefs using a model of how other players 

are learning. There is some evidence that models with sophistication (and learning to be more 

sophisticated) fit information lookup and choice data better than simple adaptive models (e.g., 

Stahl, 2000; Camerer, Ho & Chong, 2004).11  

Sophistication should interact with the nature of repeated matching. When players expect 

to play together repeatedly, if one player is sophisticated it can pay for her to take actions that 

deliberately manipulate the learning process of the other player.  A common example of this sort 

of ―strategic teaching‖ is bluffing in poker: Bluffing is betting aggressively to make opponents 

believe you have a winning hand, so they should quit betting and fold their cards. It is well known 

that an incentive to ―strategically teach‖ can arise in repeated games, and also in games where a 

long-run player is matched with a sequence of short-run players (Fudenberg and Levine, 1998).  

Hampton, Bossaerts and O‘Doherty (2007) did fMRI to study strategic teaching in a two-

player ―work-shirk‖ game (a version of asymmetric matching pennies). In early work, Platt and 

Glimcher recorded neural firing in lateral intraparietal cortext (LIP) and found it associated 

closely with expected payoffs in this game, for monkeys playing computerized opponents. Simple 

                                                 
11 Notice that while these theories can be difficult to distinguish using only observed 

choices, it is easy to distinguish them with cognitive data: Adaptive players do not need 

to look at the payoffs other players get, but sophisticated players do need to look at those 

payoffs. The fact that players usually do attend to payoffs of others players (e.g., 

Knoepfle, Wang and Camerer, 2009) is evidence for sophistication. 



reinforcement learning fits these neural signals well in monkeys  (e.g., Seo, Barraclough & Lee, 
2009). 

 The authors fit three models: Reinforcement learning; fictitious play; an ―influence 

model‖ where players account for the impact of current actions on their own value in the future 

through its influence on the opponent‘s reinforcement learning. For example, an employee who 

chooses W when the employer picked D earns 0. However, if a learning employer is then likely to 

pick D again in the future, the W choice has an ―influence value‖ because it raises the value of 

shirking (S).  

 Hampton et al. found that for about half the subjects choices were better fit by including 

an influence value term (half were not). They analyzed two areas generally though to be part of 

the mentalizing circuit, the superior temporal sulcus (STS) and dorsomedial prefrontal cortex 

(mPFC). They found that these areas correlated with different aspects of the influence model. 

mPFC activity correlated to predicted reward in the influence model at the time of choice, while 

the STS correlated to the component of prediction error related to second-order belief, 

specifically this area correlated with the amount that the model predicted the opponent should 

adapt his behavior based on your action (when feedback is seen).  Notice that both this error 

signal, and predicted reward, are largest when surprise is involved.  Predicted reward in the 

influence model is largest when the subject switches strategies, i.e. when the subject surprises his 

opponent.  Similarly, the influence update signal is largest when a player‘s own action is in 

opposition to his second-order belief (i.e., the player plans to choose a strategy different than 

what they think the other player expects).   

Direct strategic deception is shown by Bhatt, Lohrenz, Camerer and Montague (2010) in 

bargaining. Two players, a buyer and a seller, play 60 rounds of the game. At the beginning of 

each round the ―buyer‖ is informed of her private value V, which is an integer drawn with 

uniform probability between 1 and 10 (Figure 2).  She is then asked to ―suggest a price‖ S to the 

seller, an integer between 1 and 10.  The seller sees this suggestion and sets a price P. If P < V, 

the trade executes and the seller and buyer earn P and V-P. If P > V, the trade does not execute 

and they get nothing. Importantly, no feedback about whether the trade occurred is provided to 

either player after each round. 

 By regressing each buyer‘s suggestions s against their values V, Bhatt et al. could classify 

buyers into three types. One type showed no strong correlation. A second ―incrementalist‖ type 

typically had a strong positive correlation (and high R2), due to deliberate revelation of values (in 

an effort to increase efficiency). A third ―strategist‖ type used a counterintuitive strategy of 

sending high S suggestions when they have low values V, and sending low suggestions when 

they have high values (so S and V are negatively correlated).  (This behavior is predicted as level-

2 in a modified CH model.)  The idea is that naïve level-1 sellers will attempt to make inferences 

about how ―honest‖ a buyer is by considering the history of suggestions they see in the game. If 

those sellers see only low values of S they will infer that the buyer is low-balling and will ignore 

the suggestions12.  However, if they see a relatively uniform mixture of suggestions, they will 

think the buyer must be prosocially revealing something about their values to increase gains from 

trade. They will tend to trust the suggestions, choosing low prices when they see low suggestions 

and high prices when they see high suggestions.  Level-2 strategist buyers will realize this and 

use low-value rounds, where they don‘t stand to earn much anyway, to generate credibility so that 

they can reap all the rewards from very low prices during the high-value rounds.  

Bhatt et al. found that during the buyer‘s price suggestion period, there is stronger 

activity in the DLPFC for strategists compared to other subjects. This could be interpreted as 

evidence of active working memory (keeping track of the distribution of recent suggestions in 

order to make it look honest) or inhibition of a natural instinct to make suggestions which are 
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 Note that the unique Nash equilibrium is for no information to be translated (called ―babbling‖ in game 
theory jargon).  



positively correlated with value. There is also unusually large activity for strategists when they 

receive a high-value signal (and hence must bluff the most by suggesting a low price) in STS 

close to the region observed in Hampton et al (2007).  

For sellers who are judging how much information is conveyed by a buyer‘s price 

suggestion, Bhatt et al. (2011) found that activity in bilateral amygdala was correlated with a 

seller‘s ―suspicion‖, as measured by how closely the sellers‘ price offers matched the buyers‘ 

suggestions. A low correlation indicates suspicion and is associated with amygdala activity, 

consistent with an established role of amygdala in rapid vigilance toward threat (e.g., fear 

response).  

Together, these studies show that there is some match between computations inferred 

from choices (influence value and ―strategizing‖) and regions thought to be involved in value 

calculation and mentalizing, and in emotional judgments associated with economic suspicion.    

 

Montague and several colleagues have explored many aspects of a 10-period repeated 

trust game using fMRI. King-Casas et al. (2005) found signals in the caudate nucleus of the 

trustee brain in response to positive (―benevolent‖) reciprocity by the investor. This suggests the 

brain is computing a rather complex kind of social reward based on an anticipation of future 

responses. In addition, there is evidence that activity in the caudate region occurs earlier and 

earlier across later rounds of the experiment, by about 14 seconds, signaling a behavioral 

―intention to trust‖ well ahead of the actual behavior.  

More recently, Montague‘s group has used trust games as a tool for doing ―computational 

psychiatry‖— that is, exploring how disorders are associated with disruption conventional neural 

computations that are typically adaptive.   

King-Casas et al. (2008) consider behavior and neural activity during the trust game in 

subjects with borderline personality disorder. Borderline personality disorder (BPD) is 

characterized by emotional disregulation, including some level of paranoia, often leading to 

unstable personal relationships. In the King-Casas experiment, subjects with BPD were paired as 

trustees with healthy investors matched on education, IQ, and socioeconomic status, and played 

10 rounds of the trust game.   

The major behavioral finding is that pairs that included a BPD subjects earned 

significantly less money in total than those involving two healthy subjects.  This appears to be 

due to markedly lower levels of investment in the later rounds of the game by investors when 

playing with a BPD trustee.  In healthy pairs, breakdowns of cooperation were often followed by 

―coaxing‖ behavior by the trustees: trustees would repay all or most of the money they receive 

during the trial.  This signaled trustworthiness to the investor and often restored a cooperative 

interaction.  Investments appeared to decrease in these pairs because BPD subjects failed to 

effectively signal their trustworthiness to the investors via this coaxing behavior. 

The study found that people with BPD had significantly decreased activation in the 

anterior insula (aIns) in response to low investments as compared to controls.  Activity in aINS 

has often been linked to subjects experiencing emotional discomfort, perhaps accompanying a 

violation of social norms (e.g., low offers in the ultimatum game; Sanfey et al., 2003).  A lack of 

activity here when BPD subjects see low investment suggests a failure to interpret those low 

investments as a lack of trust in response to trustee norm violations.  The authors hypothesize that 

this failure to detect a violation of social norms impairs the ability of the BPDs to respond 

appropriately with coaxing.  In turn this failure to coax leads to decreased cooperation throughout 

the experiment and fewer returns to both parties. 

 Chiu et al. (2008) find that autistic subjects had much weaker signals in regions of 

cingulate specialized to ―self‖ signals about payoffs and actions of oneself. 

 

Discussion of Strategic Neuroscience 

 



As noted in the introduction, the goal of neuroeconomics is not to find a special brain 

area for each task. Quite the opposite: The hope is that common patterns of circuitry will emerge 

which will inform debates about the computations that are performed, and suggest new theories 

of behavior and new predictions. Strategic neuroscience is just beginning, but there is some 

tentative convergence about activity in four regions across studies: mPFC, DLPFC, the 

precuneus, and the insula. The locations of activity described in this section are identified in three 

brain ―slices‖ and shown in Figures 2A-C. 

mPFC: Activation in dorsal  mPFC was found when choices were out of equilibrium 

(Bhatt & Camerer 2005), among higher-level thinkers (Coricelli & Nagel 2009), when the other 

player‘s sophistication is uncertain (Yoshida et al. 2008), and when computing influence value 

(Hampton et al. 2008) This region is active in many social cognition tasks including self-

knowledge and perspective taking (Amodio & Frith 2006; D'Argembeau et al. 2007) and in some 

non-social tasks which require cognitive control (Ridderinkhof et al. 2004; Li et al. 2006). 

Amodio and Frith hypothesize that the region is involved with modulating behavior based on 

anticipated value, with the most posterior areas dealing with simple action values, and 

representations getting increasingly abstract and complex moving forward toward the frontal 

pole.. 

There is very tentative evidence consistent with this hypothesized posterior-anterior value 

complexity gradient, as measured by the y-coordinate in x-y-z space13: The simplest behavior is 

probably in Bhatt and Camerer (y=36), two-step thinking is a little more complex (Coricelli & 

Nagel, 2009, y=48) and influence value is rather complex (Hampton et al. 2008, y=63).  

DLPFC: The dorsolateral PFC is thought to be involved in working memory (which is 

necessary for doing ―I think he thinks…‖ types of calculations) and also in inhibition of rapid 

prepotent responses (such as implementing patient plans, e.g., McClure et al 2004, 2007;  

resisting tempting foods; Hare, Rangel & Camerer 2009). In the studies in this section, it is seen 

in Bhatt and Camerer (strategic choice out of equilibrium), Coricelli and Nagel (correlated with 

higher-level thinking), Yoshida et al. (higher-level thinking), and Bhatt et al. (strategizing price 

suggestions in bargaining). These results suggest DLPFC may be necessary for a combination of 

working memory and execuive control required to play strategically at high levels. Importantly, 

Knoch et al. (2009) found that application of disruptive TMS to right DLPFC reduced the 

tendency of players to build up reputations in partner-matching repeated trust games (with no 

such change in anonymous stranger-matching games).   

Precuneus: Precuneus activity is seen in Bhatt and Camerer (2005), Kuo et al. (2009), 

and Bhatt et al. (2010). The precuneus has reciprocal connections with many of the other areas 

mentioned throughout this chapter including the mPFC, the cingulate including both the ACC and 

retrosplenial cortices, and the dorsolateral prefrontal cortex. 

The precuneus has been implicated in a host of tasks including episodic memory retrieval 

(Shallice et al. 1994, Fletcher et al. 1995, Lundstrom et al. 2003, Addis et al. 2004), attention 

guidance and switching (both between objects, and among object features) (Culham et al. 1998; 

Le, Pardo & Hu 1998; Nagahama et al. 1999; Simon et al. 2002), a variety of imagery tasks 

(Cavanna & Trimble 2006), and perspective taking (Vogeley et al. 2004; Vogeley et al. 2001; 

Ruby & Decety 2001). Precuneus is also one of the ―default network‖ areas that are unusually 

active when subjects are conscious and resting (Raichle et al. 2001).  

Our hunch is that it is unlikely that the precuneus plays a special role in strategic 

thinking. Instead, the activity observed in a few studies is likely to be due to the fact that 

attentional control and perspective taking are important for complex strategic valuation. A fruitful 

                                                 
13

 A higher positive value of y is further forward, or more anterior, in the brain; more negative values are 

more posterior toward the back of the brain. Similarly, x values range from the left side (most negative) to 
the right side (most positive), and z-values range from most negative (the inferior part or bottom of the 
brain) to the most positive (the superior part or top of the brain). 



way to learn more would be to vary a single dimension of games, such as symmetry versus 

asymmetry, which are designed to require more perspective taking and attentional control, and 

see if precuneus is actually more active.  

Insula: Insula activity appears in Bhatt and Camerer (correlated with low strategic payoff 

and accuracy) and Kuo et al. (2009) (correlated with focality in matching games). Both studies 

show activity in the middle insula, around y=0). The insula is thought to be responsible for 

―interoception‖, that is, the perception of one‘s own internal state.  It has been proposed that the 

information received in the posterior insula is processed and re-represented in the anterior insula 

as subjective emotion, and is also important for a feeling of self (Craig 2002; Critchley 2005; 

Keysers & Gazzola 2007).  It may be that middle insula activity reflects more basic visceral 

sensations in these games—like intuitive impulses corresponding to generalized strategic 

uncertainty rather than to more analytical processing.  

 

Summary 

 

Game theory has emerged as a standard language in economics and is the focus of thousands 

of behavioral experiments. However, only a small number of these studies are focused on 

measuring non-choice aspects of algorithms that are used to choose strategies. So far, a small 

number of fMRI studies and several studies using variants of eyetracking are reasonably 

supportive of cognitive hierarchy-type models, as models of both mental computation and 

resulting choices.  

However, given that there is a huge space of possible theories covering strategic thinking, 

learning and teaching, it may be difficult to rapidly figure out which theories predict best, under 

what circumstances, without testing both the choice predictions of theories as well as cognitive 

and biological predictions. Strategic neuroscience could be very useful for making progress. In 

addition, since many of the candidate regions identified so far in fMRI or close to the scalp (such 

as TPJ, dmPFC), other tools such as EEG and TMS which record or disrupt electrical activity 

close to the cortical surface could prove particularly useful in checking robustness of results from 

fMRI and lesion studies.  

Finally, it is useful to ask again—Why care about where? That is, suppose we believed (with 

more confidence that we have now) that the common areas shown in Figures 2A-C are computing 

aspects of strategic value or action. What can be done with that information? The answer is that 

we can couple knowledge of function in these regions with emerging knowledge of how these 

regions work in different species, develop across the human life cycle (both childhood tissue 

growth and decline in aging decline), are connected to other regions, and are affected by gene 

expression, neurotransmitters, and drugs. Combining functional and anatomical knowledge will 

lead to predictions about the types of animals and people who may behave more or less 

strategically (as in Figure 1). Predictions can also be made about how activity will be modulated 

by changes in representations, or simply environmental effects, which either overload or activate 

these regions.   

 

 



 

FIGURE CAPTIONS  

 

Figure 1: Differences in brain activity in response to playing a human versus computer  

which are, respectively, larger for level-2 players (mPFC, vmPFC, TPJ) and larger 

for level-1 players (rACC). (Source: Coricelli and Nagel PNAS 2009 [permission 

TBA] 

 

Figure 2: Regions of activity in various game theoretic and mentalizing tasks. (A) Sagittal 

slice from back (posterior) to front (anterior) of the brain, x=5. Shows activity in 

precuneus/posterior cingulate (posterior) and dorsomedial prefrontal cortex (DMPFC) 

(anterior). (B) Sagittal slice, x=35 shows activity in right insula. (Left insula regions are 

inverted to opposite right regions for purposes of plotting.) (C) Coronal slice from left to 

right, y=24. Shows activity in dorsolateral prefrontal cortex (DLPFC). [NOTE: THESE 

FIGURES ARE IN A SEPARATE FILE HandbookExpEc2CamererSlices.pptx]



 

 

 

 

 
  



  

 

 

 

Conclusion 

The development of neuroimaging techniques, particularly fMRI, has opened up 

unprecedented opportunities for research on the human brain. It is now possible to index 

neural activity associated with human mental faculties, such as language processing, 

moral reasoning and economic decision making (e.g., Cohen, 2005).  However, despite 

the tremendous opportunity presented by this method, it is fraught with significant 

limitations that must be understood.  These include the noisy nature of the signals being 

measured, which are only proxies of neural function, as well as the manner in which they 

are analyzed.  Failure to consider these limitations can lead to misleading or erroneous 

conclusions, and such missteps are certainly present in the rapidly growing literature on 

fMRI studies.  At the same time, there is little doubt that the responsible use of this 

method has begun, and will continue to fuel a remarkable new period of discovery about 

the neural mechanisms underlying perception, cognition, and behavior. 

 

 

  
 

 


